Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021
https://doi.org/10.1016/j.biortech.2021.125954…
9 pages
1 file
Optimization of nutrient recovery from food waste by hydrothermal carbonization (HTC) • Acid-mediated HTC improved hydrochar properties as a solid fuel. • Low temperature (170 • C) and acidmediated (0.5 M HCl) HTC favoured nutrient extraction to process water. • Acid-mediated HTC increased the respective extraction of N and P as NH 4-N and PO 4-P.
Bioresource Technology, 2022
Every day, a large amount of food waste (FW) is released into the environment, causing financial loss and unpredictable consequences in the world, highlighting the urgency of finding a suitable approach to treating FW. As moisture content makes up 75% of the FW, hydrothermal carbonization (HTC) is a beneficial process for the treatment of FW since it does not require extensive drying. Moreover, the process is considered favorable for carbon sequestration to mitigate climate change in comparison with other processes because the majority of the carbon in FW is integrated into hydrochar. In this work, the reaction mechanism and factors affecting the HTC of FW are scrutinized. Moreover, the physicochemical properties of products after the HTC of FW are critically presented. In general, HTC of FW is considered a promising approach aiming to attain simultaneously-two core benefits on economy and energy in the sustainable development strategy.
Open Research Europe
Background: Hydrothermal carbonization (HTC) of dairy processing waste was performed to investigate the effect of temperature and initial pH on the yield and composition of the solid (hydrochar) and liquor produced. All hydrochars met the EU requirements of organo-mineral solid fertilizers defined in the Fertilizing Products Regulation in terms of phosphorus (P) and mineral content. Methods: Laboratory scale HTC was performed using pressurized reactors, and the products (solid and liquid) were collected, stored and analyzed for elemental composition and nutrient content using Inductively coupled plasma optical emission spectroscopy (ICP-OES), ultraviolet-visible spectrophotometry (UV-Vis) and other analytic techniques. Results: Maximum hydrochar yield (60.67%) was observed at T=180℃ and pH=2.25, whereas the maximum P-recovery was 80.38% at T=220℃ and pH=4.6. The heavy metal content of the hydrochars was mostly compliant with EU limitations, except for Ni at T=220℃ and pH=8.32. Meanw...
Energy & Fuels
Hydrothermal carbonization is emerging as a promising eco-friendly technology for the management of wet biomass wastes through energy recovery. It avoids drying of the feedstock and operates at a much lower temperature than conventional thermal conversion technologies, giving rise to a carbonaceous solid, hydrochar, of improved fuel quality with respect to the starting biomass. However, the aqueous fraction resulting from this process, the so-called process water, represents a troublesome secondary waste requiring effective treatment because of the high chemical oxygen demand and the presence of varying amounts of nutrients. Anaerobic digestion appears as a potential solution allowing significant reduction of the organic load while producing methane-rich biogas, thus contributing to energy recovery. Integrating hydrothermal carbonization and anaerobic digestion is gaining interest in the literature. This review compiles the reported studies on the application of hydrothermal carbonization coupled with anaerobic digestion for energy recovery of different biomass wastes, analyzing the energy balances. The main characteristics of the resulting HC and the methanogenic potential of the process waters are reviewed in connection with the operating conditions, as well as the possibility of nutrient recovery. Life cycle assessment and economic studies are included.
Bioresource Technology , 2021
Food waste (FW) is difficult to manage during thermal treatment. In this study hydrothermal carbonization (HTC) of FW was carried out at increasing temperatures and retention times using the approach of reaction severities (logR0 = 5.31–7.09). The hydrochar sample with the best-obtained energy yield was further pelletized using molasses as a binder at different ratios (5%, 10%, 20% and 30%). A conceptual framework was proposed using the circular economy concept. As severity increases, hydrochar yield declines while its fuel properties improve. Decarboxylation and dehydration allow functional groups to become impaired, including C-O and –OH. Carbon microspheres were observed on the hydrochar surface due to extensive FW carbonization. The pellets with 30% molasses as binder showed the highest mass density (1683.24 kg/m3), while the energy density for it was 37.54 GJ/m3. Food waste management will generate local employment and new business prospects by integrating HTC and pelletization.
Waste and Biomass Valorization, 2016
Hydrothermal carbonization (HTC) is a thermochemical conversion process with the potential to treat the prevalent wet urban biowaste in low-and middle-income countries. The generated hydrochar solids are a hygienic, homogenized, carbon rich and energy dense product with economic value that can be used as an alternative to wood-based charcoal or fossil fuel. Obtaining a satisfactory energy efficiency of the process is, however, one of the prerequisites for the possible breakthrough of this technology. In an experimental HTC reactor, a model kitchen/market waste feedstock (17.8 MJ/kgdb) was hydrothermally carbonized with varying loading rates (TS 20 and 25 %) under mild operational conditions with peak temperatures of 160-190 °C and process times of 2-10 h above 160 °C. The aim was to evaluate the energy ratio of the process under these conditions while examining the impact on the hydrochar quality. Results show that the chemical properties of the produced hydrochar and its heating value were of moderate quality (21.1-24.4 MJ/kgdb), showing similar characteristics like torrefied products. HTC of a 25 % TS-load during 2 h at 180 °C and maximum pressure of 18.3 bar resulted in a char chemical output energy that is twice as high as the electrical energy consumed in the process. If considering the theoretical methane potential of the process water, the energy ratio could be increased to 2.6; while reactor insulation could further enhance this ratio to 3. This article reveals the merits of mild HTC and provides relevant knowledge for attaining an optimized, energy efficient HTC system.
Energies
Hydrochars (HTCD) derived from digestates, namely D1 and D2 (from two plants) of sewage sludge, were examined with respect to their fuel properties. The hydrothermal carbonization (HTC) tests were performed at temperatures of 200 and 220 °C, for 2 and 4 h of residence times, and with 1:10 and 1:8 digestate to water ratios (D/W), causing an increase of ash content (max. 55.8%), and a decrease c.a. 20% of the higher heating value except for a slight increase to 15 kJ/kg at 200 °C and 4 h in hydrochars. Conversely, the combustion profiles of hydrochars moved towards higher temperatures (225–257 °C) and finished earlier at lower temperatures (423–438 °C). The HTCD from D1 and D2 showed very similar properties under the same conditions (200 °C, 4 h, 1:8 D/W) for combustion characteristic temperatures, indices and profiles. The best efficiency was found for HTCD2. In addition, the polluted post-processing liquid phase was treated by a distillation process providing 30% higher pH, 50% lowe...
Chemistry Africa
Hydrothermal carbonization (HTC) has gained a lot of interest in the last few years for the process production of hydrochar from the different kinds of biological materials such as agricultural waste. Therefore, a thorough review of the literature on HTC has been conducted, which is more energy-efficient and involves hydrochar preparation at a lower temperature without any specific requirements for pressure. This review article primarily differentiates between the hydrochar and biochar developed from various sources. Also, a comparative analysis has been done to evaluate the maximum efficiency of hydrochar production. The various parameters, which influence the hydrochar yield to include pH, temperature, the concentration of the modifying agent, duration of exposure, salt, and phenolic compounds, have also been highlighted in this review. The scale-up processes for industrial level hydrochar production, along with bioreactor designs, have also been discussed. We have also focused on various applications of hydrochar, such as adsorbent in wastewater treatment, carbon sequestration, gas adsorption and in the field of agriculture for soil amendment. The adsorption effects of hydrochar towards the partial and proportionate adsorption of heavy metals and hazardous chemicals have been depicted. This review of the literature clearly illustrates the role of HTC in environmental remediation of soil, air and water and its usage in various industries.
Science of The Total Environment , 2019
Editor: Damia Barcelo Food waste constitutes a remarkable portion of municipal solid waste. About one-third of the global food waste produced is lost with the food supply chain. Food waste in many countries is still dumped of in landfill or incinerated simultaneously with other municipal wastes. Food waste requires proper management and recycling techniques in order to minimise its environmental burden and risk to human life. Despite considerable research on food waste conversion still, there is a shortage of comprehensive reviews of the published literature. In this review, we provide a mini global perspective of food waste with special emphasis on New Zealand and their conversion into the useful material through hydrothermal carbonisation (HTC). Other thermal technologies such as incineration and pyrolysis are also briefly discussed. The review discusses why HTC is more suitable thermal technology than others, which are currently available. Recognising the importance of techno-economic feasibility of HTC, we present a cost analysis on the production of value-added products via HTC with examples taken from the literature to gather information in the feasibility assessment process. Finally, key challenges and future directions for a better productive way of handling food waste are being suggested.
Energies
In agricultural biogas plants, besides biogas, the by-product digestate is also produced. Due to its high moisture content and organic origin, it can successfully be applied in the hydrothermal carbonization process to avoid the fate of landfilling. This paper reviews the properties of agricultural digestate and its hydrothermal conversion (HTC) into hydrochar and process water. The type of feedstock and the parameters of the HTC process, such as temperature, pressure and residence time, affects the physical and chemical characteristics of hydrochar. Therefore, its possible application might be as a biofuel, fertilizer, soil improver, adsorber, or catalyst. In this paper, the properties of hydrochar derived from agricultural digestate are widely discussed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Bioresource technology, 2018
Journal of Environmental Chemical Engineering, 2020
Waste Management , 2020
Environmental Science & Technology, 2019
Bioresource technology, 2018
Renewable Energy, 2016
Journal of environmental chemical engineering, 2018
Bioresource Technology, 2015