Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005, Trends in ecology & evolution
Profound indirect ecosystem effects of over-fishing have been shown for coastal systems such as coral reefs and kelp forests. A new study from the ecosystem off the Canadian east coast now reveals that the elimination of large predatory fish can also cause marked cascading effects on the pelagic food web. Overall, the view emerges that, in a range of marine ecosystems, the effects of fisheries extend well beyond the collapse of fish exploited stocks.
Top Predators in Marine Ecosystems
Advances in Marine Biology, 1998
We review the effects of fishing on benthic fauna, habitat, diversity, community structure and trophic interactions in tropical, temperate and polar marine environments and consider whether it is possible to predict or manage fishing-induced changes in marine ecosystems. Such considerations are timely given the disillusionment with some fishery management strategies and that policy makers need a scientific basis for deciding whether they should respond to social, economic and political demands for instituting or preventing ecosystem-based management.Fishing has significant direct and indirect effects on habitat, and on the diversity, structure and productivity of benthic communities. These effects are most readily identified and last longest in those areas that experience infrequent natural disturbance. The initiation of fishing in an unfished system leads to dramatic changes in fish community structure. As fishing intensity increases the additional effects are more difficult to detect. Fishing has accelerated and magnified natural declines in the abundance of many forage fishes and this has lead to reduced reproductive success and abundance in birds and marine mammals. However, such donor-controlled dynamics are less apparent in food webs where fishes are the top predators since their feeding strategies are rather more plastic than those of most birds and mammals. Fishers tend to target species in sequence as a fishery develops and this leads to changes in the composition of the fished communities with time. The dramatic and apparently compensatory shifts in the biomass of different species in many fished ecosystems have often been driven by environmental change rather than the indirect effects of fishing. Indeed, in most pelagic systems, species replacements would have occurred, albeit less rapidly, in the absence of fishing pressure. In those cases when predator or prey species fill a key role, fishing can have dramatic indirect effects on community structure. Thus fishing has shifted some coral reef ecosystems to alternate stable states because there is tight predator-prey coupling between invertebrate feeding fishes and sea urchins. Fishing has reduced, and locally extirpated, populations of predatory fishes. These reductions do not have a consistent effect on the abundance and diversity of their prey: environmental processes control prey populations in some systems, whereas top-down processes are more important in others. By-catch which is discarded during fishing activities may sustain populations of scavenging species, particularly seabirds. We conclude by identifying the circumstances in which new research is needed to guide managers and stress the importance of unfished control sites for studies of fishing effects. We discuss the advantages and disadvantages of closed area management (marine reserves) and the conditions under which such management is likely to provide benefits for the fishery or ecosystem.
PLoS One, 2008
Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing-i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels.
Annual Review of Ecology, Evolution, and Systematics, 2008
Fishing remains one of the largest factors modifying marine ecosystems. Because fisheries constitute only one of many anthropogenic effects, management is shifting from single-species approaches toward ecosystem-based management. Interaction webs are a critical nexus to understand linkages, to model ecosystem change, and to apply management directives. Ecosystem-based management requires consideration of both direct and indirect effects of commercial fisheries. But it must also include impacts of bycatch, recreational fisheries, artisanal fisheries, and environmental change that can be large but unanticipated. Synergistic effects of fishing, environmental variation, and climate change increasingly threaten marine ecosystems and complicate management. Here we review the global effects of fisheries and propose an integrated framework for managing biophysical processes and human ecology. To incorporate the multitude of effects, this emerging approach focuses on the dynamics of interact...
It is becoming increasing clear that humans impact marine ecosystems and their biodiversity to a very considerate degree, and evidence of the scale of impact is growing. An enabling factor for this has been a change in focus from local-level studies to increased emphasis on meta-analysis of global or regional-level analysis of fisheries impact. Results include the facts that the world’s total fish catches have been decreasing over the last decade or more; that larger, predatory fishes (table fish) are becoming increasingly scarcer; and that we are appropriating the ocean shelves’ primary productivity to the same level as we are for terrestrial ecosystems. Ecosystems are being eroded in countries throughout the world, and though one might get the impression from the IUCN Red List that it is mainly a developed-country problem, it is alarming that the impact of severe overfishing may be on an even larger scale for developing countries. We describe aspects of the risks overfishing poses to marine ecosystems, and point out how ecosystem approaches to fisheries can be used to evaluate the potential impact of alternative fishing policy scenarios.
ices.dk
The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach (Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. The keystone species in both ecosystems is cod. In both ecosystems, forage fish are also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to his equilibrium.
Fisheries Research, 2009
Proceedings of the National Academy of Sciences
Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile c...
Progress in Oceanography, 2009
The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach (Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. Cod was the keystone species in both ecosystems, and forage fish were also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to its equilibrium.
Science, 2007
Impacts of chronic overfishing are evident in population depletions worldwide, yet indirect ecosystem effects induced by predator removal from oceanic food webs remain unpredictable. As abundances of all 11 great sharks that consume other elasmobranchs (rays, skates, and small sharks) fell over the past 35 years, 12 of 14 of these prey species increased in coastal northwest Atlantic ecosystems. Effects of this community restructuring have cascaded downward from the cownose ray, whose enhanced predation on its bay scallop prey was sufficient to terminate a century-long scallop fishery. Analogous top-down effects may be a predictable consequence of eliminating entire functional groups of predators.
2008
Mounting evidence suggests that fishing can trigger trophic cascades and alter food web dynamics, yet its effects on ecosystem function remain largely unknown. We used the large-scale experimental framework of four marine reserves, spanning an oceanographic gradient in northeastern New Zealand, to test the extent to which the exploitation of reef predators can alter kelp carbon flux and secondary production. We provide evidence that the reduction of predatory snapper (Pagrus auratus) and lobster (Jasus edwardsii) can lead to an increase in sea urchins (Evechinus chloroticus) and indirect declines in kelp biomass in some locations but not others. Stable carbon isotope ratios (d 13 C) of oysters (Crassostrea gigas) and mussels (Perna canaliculus) transplanted in reserve and fished sites within four locations revealed that fishing indirectly reduced the proportion of kelp-derived organic carbon assimilated by filter feeders in two locations where densities of actively grazing sea urchins were 23.7 and 8.3 times higher and kelp biomass was an order of magnitude lower than in nonfished reserve sites. In contrast, in the two locations where fishing had no effect on urchin density or kelp biomass, we detected no effect of fishing on the carbon signature of filter feeders. We show that the effects of fishing on nearshore trophic structure and carbon flux are context-dependent and hinge on large-scale, regional oceanographic factors. Where cascading effects of fishing on kelp biomass were documented, enhanced assimilation of kelp carbon did not result in the magnification of secondary production. Instead, a strong regional gradient in filter feeder growth emerged, best predicted by chlorophyll a. Estimates of kelp contribution to the diet of transplanted consumers averaged 56.9% 6 6.2% (mean 6 SE) for mussels and 33.8% 6 7.3% for oysters, suggesting that organic carbon fixed by kelp is an important food source fueling northeastern New Zealand's nearshore food webs. The importance of predators in mediating benthic primary production and organic carbon flux suggests that overfishing can have profound consequences on ecosystem functioning particularly where pelagic primary production is limiting. Our results underscore the broader ecosystem repercussions of overfishing and its context-dependent effects.
Ecosystems can "flip" and, as a result of reinforcing feedback mechanisms, "lock" into alternative stable states. We studied this process in a kelp-forest ecosystem in Maine, USA, for nearly four decades and found two stable states: one dominated by green sea urchins and crustose coralline algae and the other by erect fleshy macroalgae. Herbivory by urchins drives algal deforestation but declined after fishing for sea urchins began in 1987. As the fishery expanded northeastward, so did phase shifts to macroalgae. By 2000, macroalgae dominated nearly all of coastal Maine. Monitoring newly settled sea urchins between 1996 and 2002 revealed sites with thousands of settlers per meter square per year, but virtually none survived to become adults. Algal succession to densely branched morphologies may create nursery habitat for settling crabs that prey on settling sea urchins. Experiments intended to restore herbivory to prefishing levels, through translocation of 51,000 adult sea urchins over two consecutive years at multiple release sites (with controls), resulted in complete urchin mortality both years as a result of predation by large migratory Cancer borealis Stimpson, 1859 crabs. Population densities of this crab increased fivefold coastwide soon after the macroalgal phase shift. Persistent absence of urchins (even in no-take reserves) probably resulted from predation on newly settled and/or adult urchins. Fisheries-induced declines in herbivory may therefore have improved recruitment potential for predatory crabs that then became the region's new apex predator. Cascading sequential processes of herbivory, recruitment, and predation create reinforcing feedback, effectively locking this ecosystem into alternative stable states.
Canadian Journal of Fisheries and Aquatic Sciences, 2008
We describe dramatic shifts in the species composition of the marine fish community of the southern Gulf of St. Lawrence using a 35-year time series of catch rates in an annual bottom-trawl survey. We attempt to understand the causes of these changes using a traits-based approach that relates the similarity among species in their abundance trends to similarities in their ecological traits. We selected traits based on a priori beliefs of how each should reflect susceptibility to changes in a different external factor potentially affecting the community. We found evidence for an effect of ocean climate and top-down effects of fishing and seal predation, but not for bottom-up effects of prey availability on adult fishes. Mean body length in the community decreased dramatically in the 1990s. This reflected the removal of large-bodied fishes by fishing and sharp increases in the abundance of small fishes. The biomass of small fish was inversely correlated with an index of predation on th...
2012
Recent publications that have assessed the relationship between fishing and possible alterations of direct and indirect trophic relationships within impacted ecosystems have detected strong ecological effects, such as trophic cascades and changes in ecosystem control equilibrium, either top-down or bottom-up (Barausse et al.
Conservation Biology, 2010
Abstract: Trophic cascades triggered by fishing have profound implications for marine ecosystems and the socioeconomic systems that depend on them. With the number of reported cases quickly growing, key features and commonalities have emerged. Fishery-induced trophic cascades often display differential response times and nonlinear trajectories among trophic levels and can be accompanied by shifts in alternative states. Furthermore, their magnitude appears to be context dependent, varying as a function of species diversity, regional oceanography, local physical disturbance, habitat complexity, and the nature of the fishery itself. To conserve and manage exploited marine ecosystems, there is a pressing need for an improved understanding of the conditions that promote or inhibit the cascading consequences of fishing. Future research should investigate how the trophic effects of fishing interact with other human disturbances, identify strongly interacting species and ecosystem features that confer resilience to exploitation, determine ranges of predator depletion that elicit trophic cascades, pinpoint antecedents that signal ecosystem state shifts, and quantify variation in trophic rates across oceanographic conditions. This information will advance predictive models designed to forecast the trophic effects of fishing and will allow managers to better anticipate and avoid fishery-induced trophic cascades.Resumen: Las cascadas tróficas disparadas por la pesca tienen implicaciones profundas para los ecosistemas marinos y los sistemas socioeconómicos que dependen de ellos. Con el número de casos reportados incrementando rápidamente, han emergido atributos clave y similitudes. Las cascadas tróficas inducidas por pesquerías a menudo presentan tiempos de respuesta diferenciales y trayectorias no lineales entre los niveles tróficos y pueden ser acompañados por cambios en el estado de los ecosistemas. Más aun, su magnitud parece ser dependiente del contexto, variando como una función de la diversidad de especies, la oceanografía regional, la perturbación física local, la complejidad del hábitat y la naturaleza de la pesquería misma. Para conservar y manejar ecosistemas marinos explotados, existe una necesidad imperiosa por mejorar el entendimiento de las condiciones que promueven o inhiben las consecuencias en cascada de la pesca. Más aun, la investigación futura debe examinar la interacción de los efectos tróficos de la pesca con otras perturbaciones humanas, identificar especies estrechamente interactuantes y los atributos del ecosistema que confieren resiliencia a la explotación, determinar los rangos de disminución de depredadores que provoca las cascadas tróficas, identificar antecedentes que indiquen cambios de estado de los ecosistemas y cuantificar la variación en las tasas tróficas en condiciones oceanográficas diferentes. Esta información mejorará los modelos predictivos diseñados para estimar los efectos tróficos de la pesca y permitirá que los manejadores anticipen y eviten las cascadas tróficas inducidas por pesquerías.Resumen: Las cascadas tróficas disparadas por la pesca tienen implicaciones profundas para los ecosistemas marinos y los sistemas socioeconómicos que dependen de ellos. Con el número de casos reportados incrementando rápidamente, han emergido atributos clave y similitudes. Las cascadas tróficas inducidas por pesquerías a menudo presentan tiempos de respuesta diferenciales y trayectorias no lineales entre los niveles tróficos y pueden ser acompañados por cambios en el estado de los ecosistemas. Más aun, su magnitud parece ser dependiente del contexto, variando como una función de la diversidad de especies, la oceanografía regional, la perturbación física local, la complejidad del hábitat y la naturaleza de la pesquería misma. Para conservar y manejar ecosistemas marinos explotados, existe una necesidad imperiosa por mejorar el entendimiento de las condiciones que promueven o inhiben las consecuencias en cascada de la pesca. Más aun, la investigación futura debe examinar la interacción de los efectos tróficos de la pesca con otras perturbaciones humanas, identificar especies estrechamente interactuantes y los atributos del ecosistema que confieren resiliencia a la explotación, determinar los rangos de disminución de depredadores que provoca las cascadas tróficas, identificar antecedentes que indiquen cambios de estado de los ecosistemas y cuantificar la variación en las tasas tróficas en condiciones oceanográficas diferentes. Esta información mejorará los modelos predictivos diseñados para estimar los efectos tróficos de la pesca y permitirá que los manejadores anticipen y eviten las cascadas tróficas inducidas por pesquerías.
2007
The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach (Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. The keystone species in both ecosystems is cod. In both ecosystems, forage fish are also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbati...
Journal of Animal Ecology, 2015
1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km 2) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder northeastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem.
Advances in Ecological Research, 2012
"Abrupt and rapid shifts in food web and community structure,commonly termed regime shifts, have been increasingly reported for exploited marine ecosystems around the world. Here, we present a review on regime shifts in Northern hemisphere marine ecosystems, most of them using a multivariate approach to statistically analyse time series. We show that rapid shifts occurred in synchrony during the late 1980s/early 1990s, suggesting a common large-scale climate driver and essentially matching times of change in the North Atlantic Oscillation and other atmospheric indices, which modified, for example, the local temperature regimes. We further show that trophic cascades triggered by overfishing and causing a switch of trophic regulation are regularly involved in ecosystem reorganizations. Eutrophication and the introduction of alien species can be important as well, potentially affecting tipping points or the food web structure. Our review highlights how multiple drivers potentially interact in a way that one driver undermines resilience (e.g. overfishing) and the other (e.g. climate change) gives the final impulse for an abrupt change. Further, ecosystem regime shifts can be particularly difficult to reverse when alternative stable states are involved. Understanding the drivers and mechanisms leading to regime shifts is crucial for developing ecosystem-based management strategies and establishing early-warning systems to avoid catastrophic ecosystem changes and achieve a sustainable exploitation of ecosystem services."
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.