Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2018, Foundations of Software Science and Computation Structures
The hiding operation, crucial in the compositional aspect of game semantics, removes computation paths not leading to observable results. Accordingly, games models are usually biased towards angelic non-determinism: diverging branches are forgotten. We present here new categories of games, not suffering from this bias. In our first category, we achieve this by avoiding hiding altogether; instead morphisms are uncovered strategies (with neutral events) up to weak bisimulation. Then, we show that by hiding only certain events dubbed inessential we can consider strategies up to isomorphism, and still get a category-this partial hiding remains sound up to weak bisimulation, so we get a concrete representations of programs (as in standard concurrent games) while avoiding the angelic bias. These techniques are illustrated with an interpretation of affine nondeterministic PCF which is adequate for weak bisimulation; and may, must and fair convergences.
2018
The concept of fairness for a concurrent program means that the program must be able to exhibit an unbounded amount of nondeterminism without diverging. Game semantics models of nondeterminism show that this is hard to implement; for example, Harmer and McCusker’s model only admits infinite nondeterminism if there is also the possibility of divergence. We solve a long standing problem by giving a fully abstract game semantics for a simple stateful language with a countably infinite nondeterminism primitive. We see that doing so requires us to keep track of infinitary information about strategies, as well as their finite behaviours. The unbounded nondeterminism gives rise to further problems, which can be formalized as a lack of continuity in the language. In order to prove adequacy for our model (which usually requires continuity), we develop a new technique in which we simulate the nondeterminism using a deterministic stateful construction, and then use combinatorial techniques to ...
We briefly present a new representation theory for game semantics which is very concrete: instead of playing in an arena game in which P plays the innocent strategy given by a term, the same game is played out over (a souped up version of) the abstract syntax tree of the term itself. The plays that are thus traced out are called traversals. More abstractly, traversals are the justified sequences that are obtained by performing parallel-composition less the hiding. After stating and explaining a number of Path-Traversal Correspondence Theorems, we present a tool for game semantics based on the new representation.
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, 2018
We define a new games model of Probabilistic PCF (PPCF) by enriching thin concurrent games with symmetry, recently introduced by Castellan et al, with probability. This model supports two interpretations of PPCF, one sequential and one parallel. We make the case for this model by exploiting the causal structure of probabilistic concurrent strategies. First, we show that the strategies obtained from PPCF programs have a deadlock-free interaction, and therefore deduce that there is an interpretation-preserving functor from our games to the probabilistic relational model recently proved fully abstract by Ehrhard et al. It follows that our model is intensionally fully abstract. Finally, we propose a definition of probabilistic innocence and prove a finite definability result, leading to a second (independent) proof of full abstraction.
Springer eBooks, 2015
We show that Hyland and Ong's game semantics for PCF can be presented using normalization by evaluation (nbe). We use the bijective correspondence between innocent well-bracketed strategies and PCF Böhm trees, and show how operations on PCF Böhm trees, such as composition, can be computed lazily and simply by nbe. The usual equations characteristic of games follow from the nbe construction without reference to low-level game-theoretic machinery. As an illustration, we give a Haskell program computing the application of innocent strategies.
. We study extensional models of the untyped lambda calculus in the setting of game semantics. In particular, we show that, somewhat unexpectedly and contrary to what happens in ordinary categories of domains, all reflexive objects in the category of games G, introduced by Abramsky, Jagadeesan and Malacaria, induce the same -theory. This is H , the maximal theory induced already by the classical CPO model D1 , introduced by Scott in 1969. This results indicates that the current notion of game carries a very specific bias towards head reduction. Introduction -theories are congruences over -terms, which extend pure fi-conversion. Their interest lies in the fact that they correspond to the possible operational (obser- vational) semantics of -calculus. Although researchers have mainly focused on only three such operational semantics, namely those given by head reduction, head lazy reduction or call-by-value reduction, the class of -theories is, in effect, unfathomly rich, see e.g. [6...
2002
Game Semantics has emerged as a powerful paradigm for giving semantics to a variety of programming languages and logical systems. It has been used to construct the first syntax-independent fully abstract models for a spectrum of programming languages ranging from purely functional languages to languages with non-functional features such as control operators and locally-scoped references [4, 21, 5, 19, 2, 22, 17, 11].
Lecture Notes in Computer Science, 2007
Game semantics is a valuable source of fully abstract models of programming languages or proof theories based on categories of so-called games and strategies. However, there are many variants of this technique, whose interrelationships largely remain to be elucidated. This raises the question: what is a category of games and strategies? Our central idea, taken from the first author's PhD thesis [11], is that positions and moves in a game should be morphisms in a base category: playing move m in position f consists in factoring f through m, the new position being the other factor. Accordingly, we provide a general construction which, from a selection of legal moves in an almost arbitrary category, produces a category of games and strategies, together with subcategories of deterministic and winning strategies. As our running example, we instantiate our construction to obtain the standard category of Hyland-Ong games subject to the switching condition. The extension of our framework to games without the switching condition is handled in the first author's PhD thesis [11].
In this paper we present a fully abstract game model for the pure lazy λ-calculus, i.e. the lazy λ-calculus without constants. In order to obtain this result we introduce a new category of games, the monotonic games, whose main characteristic consists in having an order relation on moves.
Lecture Notes in Computer Science, 2007
The notion of innocent strategy was introduced by Hyland and Ong in order to capture the interactive behaviour of λ-terms and PCF programs. An innocent strategy is defined as an alternating strategy with partial memory, in which the strategy plays according to its view. Extending the definition to nonalternating strategies is problematic, because the traditional definition of views is based on the hypothesis that Opponent and Proponent alternate during the interaction. Here, we take advantage of the diagrammatic reformulation of alternating innocence in asynchronous games, in order to provide a tentative definition of innocence in non-alternating games. The task is interesting, and far from easy. It requires the combination of true concurrency and game semantics in a clean and organic way, clarifying the relationship between asynchronous games and concurrent games in the sense of Abramsky and Melliès. It also requires an interactive reformulation of the usual acyclicity criterion of linear logic, as well as a directed variant, as a scheduling criterion.
1999
The aim of this chapter is to give an introduction to some recent work on the application of game semantics to the study of programming languages. An initial success for game semantics was its use in giving the first syntax-free descriptions of the fully abstract model for the functional programming language PCF [1,16,29]. One goal of semantics is to characterize the "universe of discourse" implicit in a programming language or a logic.
Theoretical Computer Science, 1994
The weakest-precondition interpretation of recursive procedures is developed for a language with a combination of unbounded demonic choice and unbounded angelic choice. This compositional formal semantics is proved to be equal to a game-theoretic operational semantics. Two intermediate stages are exploited. One step consists of unfolding the declaration of the recursive procedures. Fixpoint induction is used to prove the validity of this step. The compositional semantics of the unfolded declaration is proved to be equal to a formal semantics of a stack implementation of the recursive procedures. After an introduction to boolean two-person games, this stack semantics is shown to correspond to a game-theoretic operational semantics.
1999
Abstract. We study extensional models of the untyped lambda calculus in the setting of the game semantics introduced by Abramsky, Hyland et alii. In particular we show that, somewhat unexpectedly and contrary to what happens in ordinary categories of domains, all reflexive objects in a standard category of games, induce the same λ-theory. This is H∗, the maximal theory induced already by the classical C.P.O. model D∞, introduced by Scott in 1969. This results indicates that the current notion of game carries a very specific bias towards head reduction.
Game semantics aim at describing the interactive behaviour of proofs by interpreting formulas as games on which proofs induce strategies. In this article, we introduce a game semantics for a fragment of first order propositional logic. One of the main difficulties that has to be faced when constructing such semantics is to make them precise by characterizing definable strategies -that is strategies which actually behave like a proof. This characterization is usually done by restricting to the model to strategies satisfying subtle combinatory conditions such as innocence, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task which requires to combine tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of definable strategies by the means of generators and relations: those strategies can be generated from a finite set of "atomic" strategies and that the equality between strategies generated in such a way admits a finite axiomatization. These generators satisfy laws which are a variation of bialgebras laws, thus bridging algebra and denotational semantics in a clean and unexpected way. † This work has been supported by the ANR Invariants algébriques des systèmes informatiques (INVAL). Physical address:Équipe PPS, CNRS and Université Paris 7, 2 place Jussieu, case 7017,
Lecture Notes in Computer Science, 1999
We study extensional models of the untyped lambda calculus in the setting of the game semantics introduced by Abramsky, Hyland et alii. In particular we show that, somewhat unexpectedly and contrary to what happens in ordinary categories of domains, all reflexive objects in a standard category of games, induce the same λ-theory. This is H * , the maximal theory induced already by the classical C.P.O. model D∞, introduced by Scott in 1969. This results indicates that the current notion of game carries a very specific bias towards head reduction.
DAIMI Report Series, 1994
In a recent paper by Joyal, Nielsen, and Winskel, bisimulation is defined in an abstract and uniform way across a wide range of different models for concurrency. In this paper, following a recent trend in theoretical computer science, we characterize their abstract definition game-theoretically and logically in a non-interleaving model. Our characterizations appear as surprisingly simple extensions of corresponding characterizations of interleaving bisimulation.
2012 27th Annual IEEE Symposium on Logic in Computer Science, 2012
A bicategory of concurrent games, where nondeterministic strategies are formalized as certain maps of event structures, was introduced recently. This paper studies an extension of concurrent games by winning conditions, specifying players' objectives. The introduction of winning conditions raises the question of whether such games are determined, that is, if one of the players has a winning strategy. This paper gives a positive answer to this question when the games are well-founded and satisfy a structural property, race-freedom, which prevents one player from interfering with the moves available to the other. Uncovering the conditions under which concurrent games with winning conditions are determined opens up the possibility of further applications of concurrent games in areas such as logic and verification, where both winning conditions and determinacy are most needed. A concurrent-game semantics for predicate calculus is provided as an illustration.
Electronic Notes in Theoretical Computer Science, 2009
We study the algebraic structure of a programming language with higher-order store, in the style of ML references. Instead of working directly on the operational semantics of the language, we consider its fully abstract game semantics defined by Abramsky, Honda and McCusker one decade ago. This alternative description of the language is nice and conceptual, except on one significant point: the interactive behavior of the higher-order memory cell is reflected in the model by a strategy cell whose definition remains slightly enigmatic. The purpose of our work is precisely to clarify this point, by providing a neat algebraic definition of the strategy. This conceptual reconstruction of the memory cell is based on the idea that a general reference behaves essentially as a linear feedback (or trace operator) in an ambient category of Conway games and strategies. This analysis leads to a purely axiomatic proof of soundness of the model, based on a natural refinement of the replication modality of tensor logic.
Log. Methods Comput. Sci., 2017
Weak bisimulations are typically used in process algebras where silent steps are used to abstract from internal behaviours. They facilitate relating implementations to specifications. When an implementation fails to conform to its specification, pinpointing the root cause can be challenging. In this paper we provide a generic characterisation of branching-, delayed-, $\eta$- and weak-bisimulation as a game between Spoiler and Duplicator, offering an operational understanding of the relations. We show how such games can be used to assist in diagnosing non-conformance between implementation and specification. Moreover, we show how these games can be extended to distinguish divergences.
Synthese, 2008
We make a proposal for formalizing simultaneous games at the abstraction level of player's powers, combining ideas from dynamic logic of sequential games and concurrent dynamic logic. We prove completeness for a new system of 'concurrent game logic' CDGL with respect to finite non-determined games. We also show how this system raises new mathematical issues, and throws light on branching quantifiers and independence-friendly evaluation games for first-order logic.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.