Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, IEEE Transactions on Software Engineering
…
15 pages
1 file
Software comes in releases. An implausible change to software is something that has never been changed in prior releases. When planning how to reduce defects, it is better to use plausible changes, i.e., changes with some precedence in the prior releases. To demonstrate these points, this paper compares several defect reduction planning tools. LIME is a local sensitivity analysis tool that can report the fewest changes needed to alter the classification of some code module (e.g., from "defective" to "non-defective"). TimeLIME is a new tool, introduced in this paper, that improves LIME by restricting its plans to just those attributes which change the most within a project. In this study, we compared the performance of LIME and TimeLIME and several other defect reduction planning algorithms. The generated plans were assessed via (a) the similarity scores between the proposed code changes and the real code changes made by developers; and (b) the improvement scores seen within projects that followed the plans. For nine project trails, we found that TimeLIME outperformed all other algorithms (in 8 out of 9 trials). Hence, we strongly recommend using past releases as a source of knowledge for computing fixes for new releases (using TimeLIME). Apart from these specific results about planning defect reductions and TimeLIME, the more general point of this paper is that our community should be more careful about using off-the-shelf AI tools,without first applying SE knowledge. In this case study, it was not difficult to augment a standard AI algorithm with SE knowledge (that past releases are a good source of knowledge for planning defect reductions). As shown here, once that SE knowledge is applied, this can result in dramatically better systems.
2015
Software developers in large projects work in complex information landscapes and staying on top of all relevant software artifacts is an acknowledged challenge. As software systems often evolve over many years, a large number of issue reports is typically managed during the lifetime of a system, representing the units of work needed for its improvement, e.g., defects to fix, requested features, or missing documentation. Efficient management of incoming issue reports requires the successful navigation of the information landscape of a project. In this thesis, we address two tasks involved in issue management: Issue Assignment (IA) and Change Impact Analysis (CIA). IA is the early task of allocating an issue report to a development team, and CIA is the subsequent activity of identifying how source code changes affect the existing software artifacts. While IA is fundamental in all large software projects, CIA is particularly important to safety-critical development. Our solution approach, grounded on surveys of industry practice as well as scientific literature, is to support navigation by combining information retrieval and machine learning into Recommendation Systems for Software Engineering (RSSE). While the sheer number of incoming issue reports might challenge the overview of a human developer, our techniques instead benefit from the availability of ever-growing training data. We leverage the volume of issue reports to develop accurate decision support for software evolution. We evaluate our proposals both by deploying an RSSE in two development teams, and by simulation scenarios, i.e., we assess the correctness of the RSSEs' output when replaying the historical inflow of issue reports. In total, more than 60,000 historical issue reports are involved in our studies, originating from the evolution of five proprietary systems for two companies. Our results show that RSSEs for both IA and CIA can help developers navigate large software projects, in terms of locating development teams and software artifacts. Finally, we discuss how to support the transfer of our results to industry, focusing on addressing the context dependency of our tool support by systematically tuning parameters to a specific operational setting.
2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), 2018
As Artificial Intelligence (AI) techniques become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classi...
Advances in Computational Intelligence and Robotics, 2010
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. Library of Congress Cataloging-in-Publication Data Artificial intelligence applications for improved software engineering development : new prospects / Farid Meziane and Sunil Vadera, editors. p. cm. Includes bibliographical references and index.
2018
The current generation of software analytics tools are mostly prediction algorithms (e.g. support vector machines, naive bayes, logistic regression, etc). While prediction is useful, after prediction comes planning about what actions to take in order to improve quality. This research seeks methods that generate demonstrably useful guidance on ''what to do'' within the context of a specific software project. Specifically, we propose XTREE (for within-project planning) and BELLTREE (for cross-project planning) to generating plans that can improve software quality. Each such plan has the property that, if followed, it reduces the probability of future defect reports. When compared to other planning algorithms from the SE literature, we find that this new approach is most effective at learning plans from one project, then applying those plans to another. In 10 open-source JAVA systems, several hundreds of defects were reduced in sections of the code that followed the pla...
2009
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. Library of Congress Cataloging-in-Publication Data Artificial intelligence applications for improved software engineering development : new prospects / Farid Meziane and Sunil Vadera, editors. p. cm. Includes bibliographical references and index.
2021
Automation and intelligence constitute a major preoccupation in the field of software engineering. With the great evolution of Artificial Intelligence, researchers and industry were steered to the use of Machine Learning and Deep Learning models to optimize tasks, automate pipelines, and build intelligent systems. The big capabilities of Artificial Intelligence make it possible to imitate and even outperform human intelligence in some cases as well as to automate manual tasks while rising accuracy, quality, and efficiency. In fact, accomplishing software-related tasks requires specific knowledge and skills. Thanks to the powerful capabilities of Artificial Intelligence, we could infer that expertise from historical experience using machine learning techniques. This would alleviate the burden on software specialists and allow them to focus on valuable tasks. In particular, Model-Driven Engineering is an evolving field that aims to raise the abstraction level of languages and to focus more on domain specificities. This allows shifting the effort put on the implementation and low-level programming to a higher point of view focused on design, architecture, and decision making. Thereby, this will increase the efficiency and productivity of creating applications. For its part, the design of metamodels is a substantial task in Model-Driven Engineering. Accordingly, it is important to maintain a high-level quality of metamodels because they constitute a primary and fundamental artifact. However, the bad design choices as well as the repetitive design modifications, due to the evolution of requirements, could deteriorate the quality of the metamodel. The accumulation of bad design choices and quality degradation could imply negative outcomes in the long term. Thus, refactoring metamodels is a very important task. It aims to improve and maintain good quality characteristics of metamodels such as maintainability, reusability, extendibility, etc. Moreover, the refactoring task of metamodels is complex, especially, when dealing with large designs. Therefore, automating and assisting architects in this task is advantageous since they could focus on more valuable tasks that require human intuition. In this thesis, we propose a cartography of the potential tasks that we could either automate or improve using Artificial Intelligence techniques. Then, we select the metamodeling vii task and we tackle the problem of metamodel refactoring. We suggest two different approaches: A first approach that consists of using a genetic algorithm to optimize set quality attributes and recommend candidate metamodel refactoring solutions. A second approach based on mathematical logic that consists of defining the specification of an input metamodel, encoding the quality attributes and the absence of smells as a set of constraints and finally satisfying these constraints using Alloy.
2007
Abstract Adoption of advanced automated SE (ASE) tools would be favored if a business case could be made that these tools are more valuable than alternate methods. In theory, software prediction models can be used to make that case. In practice, this is complicated by the" local tuning" problem. Normally, predictors for software effort and defects and threat use local data to tune their predictions. Such local tuning data is often unavailable.
2012
Abstract There has been a recent surge in interest in the application of Artificial Intelligence (AI) techniques to Software Engineering (SE) problems. The work is typified by recent advances in Search Based Software Engineering, but also by long established work in Probabilistic reasoning and machine learning for Software Engineering. This paper explores some of the relationships between these strands of closely related work, arguing that they have much in common and sets out some future challenges in the area of AI for SE.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Computer software and media applications, 2024
International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022
Proceedings of the FSE/SDP workshop on Future of software engineering research - FoSER '10, 2010
ACM International Conference Proceeding Series, 2009
Anais do II Workshop Brasileiro de Engenharia de Software Inteligente (ISE 2022)
Knowledge-Based Systems, 2009