Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2022, Materials
This work was developed within the scope of the research project “Easyfloor—Development of composite sandwich panels for building floor rehabilitation”, which aims at developing an innovative hybrid sandwich panel as an alternative construction system to conventional floor solutions, mainly for building rehabilitation. The developed hybrid sandwich panel is composed of a top face layer of steel-fibre-reinforced self-compacting concrete (FRC), a core of polyurethane (PUR) closed-cell foam, a bottom face sheet, and lateral webs of glass-fibre-reinforced polymer (GFRP). Full-scale experimental tests on the developed sandwich panels were carried out to characterize their short- and long-term (creep) flexural behaviour. The present work includes a detailed description of the developed panels and the experimental programme carried out and presents and discusses the relevant results. The experimental results showed an almost linear behaviour up to failure. The creep tests were carried out ...
Composite Structures, 2017
Sandwich panels often need to be designed to sustain significant permanent loads, raising the need to accurately account for long-term creep deformation. However, the accurate prediction of creep in sandwich panels is not trivial, particularly owing to their composite multi-layered nature, the multitude of possible face and core material combinations, and the possible existence of through-thickness shear reinforcement (ribs/webs). This paper presents numerical investigations on the creep behaviour of composite sandwich panels produced by vacuum infusion with glass-fibre reinforced polymer (GFRP) faces and ribs, and polyurethane (PUR) and polyethylene terephthalate (PET) foam cores. Carrera Unified Formulation (CUF) is implemented, for the first time using 1D elements with an equivalent single layer (ESL) methodology, to model the creep response of simple and ribbed panels by adopting a Composite Creep Modelling (CCM) approach. Previous experimental results from creep tests carried out on such sandwich panels and their constituent materials are used to obtain time-dependent constitutive relations for the materials in various layers and validate the numerical results. Additionally, results from analytical beam models using Timoshenko beam theory (TBT) with multi-layered sections are used to further validate the numerical outputs obtained with CUF. The developed numerical models were able to predict the experimental creep behaviour of the full-scale sandwich panels with reasonable accuracy. Differences observed between the CUF and TBT models mainly stem from the inherent approximations concerning the shear correction factors used with TBT, which contrast with the solutions provided by CUF, where such factors do not need to be considered when higher degrees of approximation are used.
Advances in Materials Science and Engineering, 2018
Composite structural insulated panels (CSIPs) have been developed for structural floor applications instead of traditional structural insulated panels (SIPs). However, the load bearing capacity of CSIPs is low due to the debonding between the top face sheet and the core when they are used for floors. To overcome this drawback, an improved composite structural insulated panel (ICSIP) was proposed and analyzed in this paper. In ICSIPs, a thick layer of concrete is used as the top face sheet instead of glass-fiber-reinforced polymer (GFRP) in CSIPs to increase the stiffness of the top compression face sheet. However, the bottom GFRP face sheet and EPS cores in CSIPs are preserved to reduce the weight of the structure and act as a template for the top concrete panels. Full-scale experimental testing and finite-element analysis were conducted to predict the flexural strength and deflection of the ICSIP floor member. Good agreement has been observed between the numerical results and exper...
2017
A series of experimental tests carried out on a com posite prototype to be used as a floor module of an emergency house is presented in this paper. The prototype com prises a frame structure formed by GFRP pultruded p rofiles, and two sandwich panels constituted by GFRP skins a nd a polyurethane foam core that configures the flo or slab. The present work is part of the project ‘‘ClickHous e – Development of a prefabricated emergency house prototype made of composites materials” and investigates the feasibility of the assemblage process of the protot ype and performance to support load conditions typical of r esidential houses. Furthermore, sandwich panels are also independently tested, analysing their flexural resp on e, failure mechanisms and creep behaviour. Obtai ned results confirm the good performance of the prototype to be us d as floor module of an emergency housing, with a good mechanical behaviour and the capacity of being tran sported to the disaster areas in the form of v...
Engineering Structures, 2012
A new glass fibre reinforced polymer (GFRP) sandwich panel has been developed for flooring system. The new panel is made of modified phenolic core and E-CR glass skins. This paper presents the results of the experimental behaviour and the non-linear finite element analysis (FEA) of the GFRP sandwich panel. The experimental works investigate the behaviour of the GFRP sandwich panel, skin-core interaction, and core behaviour. A non-linear finite element model was developed to simulate the behaviour of the skin-core interaction, and the model was verified by comparing the results with those obtained from testing. The non-linear FE model was applied to a single span GFRP sandwich floor panel under point load test. The GFRP sandwich floor panel demonstrated a linear behaviour under point load. The results of the numerical simulations show a good agreement with the experimental results.
Engineering Structures, 2012
This paper presents the second part of an experimental investigation carried out on a construction system based on completed in-situ sandwich panels with non-shear connectors, concerning the study of floor sandwich panels. Four-point flexural tests were carried out on several full-scale panel specimens with different slenderness ratios in order to study the behaviour of panels under vertical loads. Additionally, wall-floor nodes with different connection details were tested to analyze the effective degree of the rotational restraint of different realistic nodes. Furthermore, a loading test on the floor of a full scale 3D mockup entirely built with sandwich panels was carried out to investigate the service and ultimate behaviour of a real floor. The most significant load-displacement diagrams for increasing load are illustrated and the failure modalities are discussed. The semi-composite behaviour of the panels, guaranteed by the internal layer of polystyrene and the reinforced concrete beams at the panel ends, is highlighted. The effects of the wall-floor connection and the bi-dimensional behaviour of the floor are also evaluated. Finally, some numerical simulations are performed with non-linear finite element models and some useful design indications are given.
2012
In this paper, an innovative thermally efficient sandwich structural panel is proposed for the structural walls of a pre-fabricated modular housing system. Traditionally, sandwich concrete panels consist of conventional reinforced concrete wythes as external layers, polystyrene foam as core material and steel connectors. However, steel connectors are known to cause thermal bridges on the building envelope and possibly condensation and mould problems. Furthermore, the possibilities for thickness reduction/optimization of conventionally reinforced concrete layers are frequently limited by minimum cover requirements. To overcome these issues, the proposed sandwich panel comprises Fibre Reinforced Polymer (FRP) connectors and two thin layers of Steel Fibre Reinforced Self-Compacting Concrete (SFRSCC). This paper presents the basic conception of the proposed building system together with preliminary parametric numerical analyses to define the arrangement and geometry of the elements that constitute the sandwich panels. Finally, the feasibility of using the proposed connector and SFRSCC on the external wythes is experimentally investigated through a series of pull-out tests where failure modes and load capacity of the connections are analysed.
2016
The structural insulated panel (SIP) is a sandwich structured composite that is prefabricated by attaching a lightweight thick core made of Expanded Polystyrene (EPS) foam laminated between two thin, and stiff face skins made of Oriented Strand Board (OSB). The use of sandwich panels provides key benefits over conventional materials including: very low weight; high stiffness; durability and; production and construction cost savings. The facing skins of the sandwich panel can be considered as the flanges for the I-beam carrying bending stresses in which one face skin is subjected to tension, and the other is in compression. The core resists the shear loads and stabilizes the skin faces together giving uniformly stiffened panel. OSB is wood product that shrinks when dry and swells when adsorb moisture either due to liquid or vapor from the surrounding atmosphere. The relative combination of relative humidity and temperature is introduced into the equilibrium moisture content (EMC) tha...
Sandwich components have emerged as light weight, efficient, economical, recyclable and reusable building systems which provide an alternative to both stiffened steel and reinforced concrete. These components are made of composite materials in which two metal face plates or Glassfibre Reinforced Cement (GRC) layers are bonded and form a sandwich with light weight compact polyurethane (PU) elastomer core. Existing examples of product applications are light weight sandwich panels for walls and roofs, Sandwich Plate System (SPS) for stadia, arena terraces, naval construction and bridges and Domeshell structures for dome type structures. Limited research has been conducted to investigate performance characteristics and applicability of sandwich or hybrid materials as structural flooring systems. Performance characteristics of Hybrid Floor Plate Systems comprising GRC, PU and Steel have not been adequately investigated and quantified. Therefore there is very little knowledge and design guidance for their application in commercial and residential buildings. This research investigates performance characteristics steel, PU and GRC in Hybrid Floor Plate Systems (HFPS) and develops a new floor system with appropriate design guide lines.
Composite Structures, 2015
A connection system between adjacent sandwich panels for use in building floor rehabilitation, consisting of an adhesively (epoxy) bonded Z-joint, is proposed and studied. Experimental and numerical investigations were carried out to assess the joints' behaviour under vertical loads, their effect on the overall mechanical response of the sandwich floor panels, and the stress distributions within the various panel components. Their behaviour along the transverse and longitudinal (main span) directions was studied for panels made of glass-fibre reinforced polymer (GFRP) faces and two types of cores: polyurethane (PUR) foam and balsa wood. The joints' failure along the transverse direction occurred in the GFRP elements due to excessive through-thickness tensile stresses-failure in the adhesive layer was not observed. In the longitudinal direction, joint failure did not occur. The developed FE models were able to simulate the behaviour of the connections and jointed panels, providing reasonably accurate predictions for the deformations and failure modes experimentally observed. The joints significantly increased the panels' shear stiffness, but showed limited influence on their bending stiffness. Although the flexural stiffness of the PUR foam and balsa wood cored panels was similar, the balsa wood core absorbed a significantly higher portion of shear force.
Composite Structures, 2007
This work deals with the analysis of the mechanical behaviour of a class of sandwich structures widely employed in marine constructions, constituted by fiber-glass laminate skins over PVC foam or polyester mat cores. In detail, a systematic experimental study and numerical simulations have shown that the theoretical prediction of the strength and the actual failure mechanism of these sandwich structures can be affected by significant errors, specially in the presence of prevalent shear loading. Moreover, because of the low shear stiffness and the elastic constants mismatch of the skins and core material, failure modes and strength are strongly influenced by eventual stresses orthogonal to the middle plane of the sandwich. In particular, for the sandwich structures with a PVC foam core, such a stress interaction leads to early skin-core delamination failure, whereas for those with a polyester core it leads to core shear-cohesive failure. By means of accurate non-linear simulations, accurate failure criteria, that can be used at the design stage in the presence of complex loading, have also been developed.
2010
This study addresses the flexural performance of sandwich panels composed of a polyurethane foam core and glass fibre-reinforced polymer (GFRP) skins. Panels with and without GFRP ribs connecting the skins have been studied. While the motivation of the study was to develop new insulated cladding panels for buildings, most of the work and findings are also applicable to other potential applications such as flooring, roofing and lightweight decking. The study comprises experimental, numerical, and analytical investigations. The experimental program included three phases. Phase I is a comprehensive material testing program of the polyurethane core and GFRP skins and ribs. In Phase II, six medium size (2500x660x78 mm) panels with different rib configurations were tested in one-way bending. It was shown that flexural strength and stiffness have increased by 50 to 150%, depending on the rib configuration, compared to a panel without ribs. In Phase III, two large-scale (9150x2440x78 mm) panels, representing a cladding system envisioned to be used in the field, were tested under a realistic air pressure and discrete loads, respectively. The deflection under service wind load did not exceed span/360, while the ultimate pressure was about 2.6 times the maximum factored wind pressure in Canada. A numerical study using finite element analysis (FEA) was carried out. The FEA model accounted for the significant material nonlinearities, especially for the polyurethane soft core, and the geometric nonlinearity, which is mainly a reduction in thickness due to core softness. Another independent analytical model was developed based on equilibrium and strain compatibility, accounting for the core excessive shear i Abstract ii deformation. The model also captures the localized deformations of the loaded skin, using the principals of beam-on-elastic foundation. Both models were successfully validated using experimental results. Possible failure modes, namely core shear failure, and compression skin crushing or wrinkling were successfully predicted. A parametric study was carried out to explore further the core density, skin thickness, and rib spacing effects. As the core density increased, flexural strength and stiffness increased and shear deformations reduced. Also, increasing skin thickness became more effective as the core density increased. The optimal density was 95-130 kg/m 3. Reducing the spacing of ribs enhanced the strength up to a certain level; It then stabilized at a spacing of 2.9 times the panel thickness.
2015
The growing need for building constructions for dwelling, in developing countries and due to some particular contingencies of such locations, has led to the necessity to find alternative constructive solutions to traditional methods of building. The advantageous features of the sandwich panels, such as the high stiffness/weight and strength/weight ratios, make them easy to use on the building site and can perform the functions of floor, walls and roof. The suitability of these sandwich panels in a prefabricated construction system was studied. Three types of panels were studied, with epoxy resin reinforced with glass-fibre (GFRP) as facing materials and the following core materials: expanded polystyrene (EPS), agglomerated of expanded cork (ACE) and polypropylene honeycomb (FMPP). For this purpose, a study of the constituent materials and of the mechanical behaviour of sandwich panels was performed. Additionally, an experimental campaign was executed with the aim of doing a mechanic...
Composite Structures, 2016
A series of experimental tests carried out on a composite prototype to be used as a floor module of an emergency house is presented in this paper. The prototype comprises a frame structure formed by GFRP pultruded profiles, and two sandwich panels constituted by GFRP skins and a polyurethane foam core that configures the floor slab. The present work is part of the project "ClickHouse-Development of a prefabricated emergency house prototype made of composites materials" and investigates the feasibility of the assemblage process of the prototype and performance to support load conditions typical of residential houses. Furthermore, sandwich panels are also independently tested, analysing their flexural response, failure mechanisms and creep behaviour. Obtained results confirm the good performance of the prototype to be used as floor module of an emergency housing, with a good mechanical behaviour and the capacity of being transported to the disaster areas in the form of various low weight segments, and rapidly installed. Additionally, finite element simulations were carried out to assess the stress distributions in the prototype components and to evaluate the global behaviour and load transfer mechanism of the connections.
KSCE Journal of Civil Engineering, 2010
This paper presents the analytical and experimental investigations performed to evaluate the structural behavior of Fiber-Reinforced Polymer (FRP) Honeycomb Sandwich Panels (HCSPs) used for bridge decks. The analytical investigation includes modeling FRP HCSPs using three Finite Element Models (FEM) and a simplified I-beam model. Comparing analysis results of the four models against experimental data from literature indicated that the simplified I-beam modeling method provides comparable accuracy while being computationally efficient. The experimental investigation includes flexure, creep, and fatigue testing of three full-scale HCSPs. Flexure testing was performed to estimate the linear stiffness and flexural capacity of the panel for calibrating the developed analytical models. Creep testing was performed by monitoring the panel behavior under sustained load for a six-month period using a wireless sensor system. Creep test results indicated that FRP HCSPs have insignificant creep deformations under service loads and room temperature. Fatigue testing performed for two-million cycles indicated that FRP HCSPs have adequate resistance to cyclic loads. On the other hand, static load testing of the fatigued panel showed a significant decrease in the panel stiffness.
Advances in Civil Engineering, 2020
The traditional composite sandwich structures have disadvantages of low shear modulus and large deformation when used in civil engineering applications. To overcome these problems, this paper proposed a novel composite sandwich panel with upper and lower GFRP skins and a hybrid polyurethane (PU) foam core (GHP panels). The hybrid core is composed of different densities (150, 250, and 350 kg/m3) of the foam core which is divided functionally by horizontal GFRP ribs. The hard core is placed in the compression area to resist compressive strength and improve the stiffness of the composite sandwich structure, while the soft core is placed in the tension area. Six GHP panels were tested loaded in 4-point bending to study the effect of horizontal ribs and hybrid core configurations on the stiffness, strength, and failure modes of GHP panels. Experimental results show that compared to the control panel, a maximum of 54.6% and 50% increase in the strength and bending stiffness can be achieve...
Journal of Composite Materials, 2018
The present paper explores different techniques for increasing flexural performance of composite sandwich panels made of hand-layup glass fiber reinforced polymer skins and low density closed cell polyurethane foam core. An experimental program compares the performance of simple panels face to the use of transversal and longitudinal internal glass fiber reinforced polymer ribs and the installation of a strain hardening cementitious base composite top layer over the panels. Based on the experimental results, finite element models are also developed to simulate the flexural behavior of tested panels and conducted an in depth analysis of the techniques studied. Obtained experimental and numerical results show that the use of internal glass fiber reinforced polymer ribs (especially in longitudinal direction) along with the use of strain hardening cementitious base composite significantly and effectively increases the flexural performance of sandwich panels. The high stiffness to weight ...
Composites Part B: Engineering, 2015
The objective of this study was to evaluate three potential core alternatives for glass fiber reinforced polymer (GFRP) foam-core sandwich panels. The proposed system could reduce the initial production costs and the manufacturing difficulties while improving the system performance. Three different polyurethane foam configurations were considered for the inner core, and the most suitable system was recommended for further prototyping. These configurations consisted of high-density polyurethane foam (Type 1), a bidirectional gridwork of thin, interconnecting, GFRP webs that is in-filled with lowdensity polyurethane foam (Type 2), and trapezoidal-shaped, low-density polyurethane foam utilizing GFRP web layers (Type 3). The facings of the three cores consisted of three plies of bidirectional E-glass woven fabric within a compatible polyurethane resin. Several types of small-scale experimental investigations were conducted. The results from this study indicated that the Types 1 and 2 cores were very weak and flexible making their implementation in bridge deck panels less practical. The Type 3 core possessed a higher strength and stiffness than the other two types. Therefore, this type is recommended for the proposed sandwich system to serve as a candidate for further development. Additionally, a finite element model (FEM) was developed using software package ABAQUS for the Type 3 system to further investigate its structural behavior. This model was successfully compared to experimental data indicating its suitability for parametric analysis of panels and their design.
The First International Symposium on Jointless & Sustainable Bridges
The structural insulated panel (SIP) is a sandwich structured composite that is prefabricated by attaching a lightweight thick core made of Expanded Polystyrene (EPS) foam laminated between two thin, and stiff face skins made of Oriented Strand Board (OSB). The use of sandwich panels provides key benefits over conventional materials including: very low weight; high stiffness; durability and; production and construction cost savings. The facing skins of the sandwich panel can be considered as the flanges for the I-beam carrying bending stresses in which one face skin is subjected to tension, and the other is in compression. The core resists the shear loads and stabilizes the skin faces together giving uniformly stiffened panel. OSB is wood product that shrinks when dry and swells when adsorb moisture either due to liquid or vapor from the surrounding atmosphere. The relative combination of relative humidity and temperature is introduced into the equilibrium moisture content (EMC) that increases with the increase of the relative humidity and with decreasing temperature. Experimental test matrix includes testing 2.44 m (8’) and 4.88 m (16’) long SIPs for 5 years under different sustained loads and weather resistive barriers (WRBs), recording creep deflection, relative humidity and temperature. After creep recovery, the SIPs are loaded to-collapse to determine their flexural strength.
Journal of Civil Engineering and Architecture, 2012
A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durability requirements. Though reinforced concrete has high strength and is most widely used construction material it suffers from disadvantages like corrosion of steel, susceptibility to chemical and environmental attack. In order to overcome the above deficiencies of reinforced concrete new materials (special concrete composites) have been developed over the past three decades. Glass Fibre Reinforced Polymer (GFRP) is one such material with wide range of applications. Based on the preliminary investigations on GFRP bars, an optimum fiber/resin ratio of 7:3 was arrived. The tensile strength of GFRP bars is comparable to that of the mild steel as per the tests carried out, but the modulus of elasticity is about 25-30 percentage of that of steel bars. This paper deals with the experimental investigations carried out on small slab panels supported on all four edges with effective spans of 0.9 m × 0.45 m, which is a part of large research problem undertaken with different ratios of long span to short span with different support conditions. The test results are compared with similar slab panels reinforced with conventional mild steel bars.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.