Academia.eduAcademia.edu

Rethinking FPGA Computing with a Many-Core Approach

2010

Abstract

While ASIC design and manufacturing costs are soaring with each new technology node, the computing power and logic capacity of modern FPGAs steadily advances. Therefore, high-performance computing with FPGA-based system becomes increasingly attractive and viable. Unfortunately, truly unleashing the computing potential of FPGAs often stipulates cumbersome HDL programming and laborious manual optimization. To circumvent such challenges, we propose a Many-core Approach to Reconfigurable Computing (MARC) that (i) allows programmers to easily express parallelism through a high-level programming language, (ii) supports coarse-grain multithreading and dataflowstyle fine-grain threading while permitting bit-level resource control, and (iii) greatly reduces the effort required to repurpose the hardware system for different algorithms or different applications. Leveraging a many-core architectural template, sophisticated logic synthesizing techniques, and state-of-art compiler optimization te...