Academia.eduAcademia.edu

A novel and efficient routing architecture for multi-FPGA systems

2000, IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Abstract

Multi-FPGA systems (MFSs) are used as custom computing machines, logic emulators and rapid prototyping vehicles. A key aspect of these systems is their programmable routing architecture which is the manner in which wires, FPGAs and Field-Programmable Interconnect Devices (FPIDs) are connected. Several routing architectures for MFSs have been proposed and previous research has shown that the partial crossbar is one of the best existing architectures [Kim96] [Khal97]. In this paper we propose a new routing architecture, called the Hybrid Complete-Graph and Partial-Crossbar (HCGP) which has superior speed and cost compared to a partial crossbar. The new architecture uses both hardwired and programmable connections between the FPGAs. We compare the performance and cost of the HCGP and partial crossbar architectures experimentally, by mapping a set of 15 large benchmark circuits into each architecture. A customized set of partitioning and inter-chip routing tools were developed, with particular attention paid to architecture-appropriate inter-chip routing algorithms. We show that the cost of the partial crossbar (as measured by the number of pins on all FPGAs and FPIDs required to fit a design), is on average 20% more than the new HCGP architecture and as much as 25% more. Furthermore, the critical path delay for designs implemented on the partial crossbar were on average 20% more than the HCGP architecture and up to 43% more. Using our experimental approach, we also explore a key architecture parameter associated with the HCGP architecture: the proportion of hard-wired connections versus programmable connections, to determine its best value.