Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2020, Frontiers in Genetics
…
11 pages
1 file
Cellular commitment and differentiation involve highly coordinated mechanisms by which tissue-specific genes are activated while others are repressed. These mechanisms rely on the activity of specific transcription factors, chromatin remodeling enzymes, and higherorder chromatin organization in order to modulate transcriptional regulation on multiple cellular contexts. Tissue-specific transcription factors are key mediators of cell fate specification with the ability to reprogram cell types into different lineages. A classic example of a master transcription factor is the muscle specific factor MyoD, which belongs to the family of myogenic regulatory factors (MRFs). MRFs regulate cell fate determination and terminal differentiation of the myogenic precursors in a multistep process that eventually culminate with formation of muscle fibers. This developmental progression involves the activation and proliferation of muscle stem cells, commitment, and cell cycle exit and fusion of mononucleated myoblast to generate myotubes and myofibers. Although the epigenetics of muscle regeneration has been extensively addressed and discussed over the recent years, the influence of higher-order chromatin organization in skeletal muscle regeneration is still a field of development. In this review, we will focus on the epigenetic mechanisms modulating muscle gene expression and on the incipient work that addresses three-dimensional genome architecture and its influence in cell fate determination and differentiation to achieve skeletal myogenesis. We will visit known alterations of genome organization mediated by chromosomal fusions giving rise to novel regulatory landscapes, enhancing oncogenic activation in muscle, such as alveolar rhabdomyosarcomas (ARMS).
Skeletal Muscle
Background The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation. Methods We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions. Results Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture...
Developmental Dynamics, 2014
Background: Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage‐specific genes. The lineage‐determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation‐specific genes is established remains unclear. Results: Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co‐activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory fact...
Skeletal Muscle, 2021
In response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment.Integration of signals from the muscle environment leads to changes in gene expression through epigenetic mechanisms. Such mechanisms, including post-translational modification of chromatin and nucleosome repositioning, act to make specific gene loci more, or less, accessible to the transcriptional machinery. In youth, the muscle environment is ideally structured to allow for coordinated signaling that mediates efficient regeneration. Both age and disease alter the muscle environment such that the signaling pathways that shape the healthy...
FEBS Journal, 2014
Skeletal muscle regeneration in the adult (de novo myogenesis) depends on a resident population of muscle stem cells (satellite cells) which are normally quiescent. In response to injury or stress, satellite cells are activated and expand as myoblast cells that
Journal of Biological Chemistry, 2002
The myogenic basic helix-loop-helix family of transcription factors, MyoD, Myf5, myogenin, and MRF4, can each activate the muscle differentiation program when ectopically expressed in non-muscle cells. SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes. We demonstrated previously that SWI/SNF enzymes promote MyoD-mediated muscle differentiation. To ascertain the requirement for SWI/SNF enzymes in muscle differentiation mediated by different MyoD family members, we examined MyoD, Myf5, MRF4, and myogenin-mediated induction of muscle differentiation in cells expressing dominant negative versions of BRG1 or BRM-based SWI/SNF enzymes. We demonstrated that expression of dominant negative BRG1 or BRM inhibited the induction of muscle-specific gene expression by Myf5 and MRF4; however, myogenin failed to induce measurable quantities of muscle-specific mRNAs, even in cells not expressing dominant negative SWI/SNF. In contrast, all four myogenic regulators induced expression of the cell cycle regulators p21, Rb, and cyclin D3 and promoted cell cycle arrest independently of the SWI/SNF enzymes. We proposed that SWI/SNF enzymes are required for the induction of all muscle-specific gene expression by MyoD, Myf5, and MRF4, whereas induction of the cell cycle regulators, p21, Rb, and cyclin D3 occurred independently of SWI/SNF function.
Seminars in Cell & Developmental Biology, 2005
Cellular differentiation entails an extensive reprogramming of the genome toward the expression of discrete subsets of genes, which establish the tissue-specific phenotype. This program is achieved by epigenetic marks of the chromatin at particular loci, and is regulated by environmental cues, such as soluble factors and cell-to-cell interactions. How the intracellular cascades convert the myriad of external stimuli into the nuclear information necessary to reprogram the genome toward specific responses is a question of biological and medical interest. The elucidation of the signaling converting cues from outside the cells into chromatin modifications at individual promoters holds the promise to unveil the targets for selective pharmacological interventions to modulate gene expression for therapeutic purposes. Enhancing muscle regeneration and preventing muscle breakdown are important goals in the therapy of muscular diseases, cancer-associated cachexia and aging-associated sarcopenia. We will summarize the recent progress of our knowledge of the regulation of gene expression by intracellular cascades elicited by external cues during skeletal myogenesis. And will illustrate the potential importance of targeting the chromatin signaling in regenerative medicine-e.g. to boost muscle regeneration.
Biochemical and Biophysical Research Communications, 2012
Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.
The EMBO Journal, 2009
Focal adhesion kinase (FAK), a major cell adhesion-activated tyrosine kinase, has an important function in cell adhesion and migration. Here, we report a new signalling of FAK in regulating chromatin remodelling by its interaction with MBD2 (methyl CpG-binding protein 2), underlying FAK regulation of myogenin expression and muscle differentiation. FAK interacts with MBD2 in vitro, in myotubes, and in isolated muscle fibres. Such an interaction, increased in myotubes exposed to oxidative stress, enhances FAK nuclear localization. The nuclear FAK-MBD2 complexes alter heterochromatin reorganization and decrease MBD2 association with HDAC1 (histone deacetylase complex 1) and methyl CpG site in the myogenin promoter, thus, inducing myogenin expression. In line with this view are observations that blocking FAK nuclear localization by expressing dominant negative MBD2 or suppression of FAK expression by its miRNA in C2C12 cells attenuates myogenin induction and/or impairs muscle-terminal differentiation. Together, these results suggest an earlier unrecognized role of FAK in regulating chromatin remodelling that is important for myogenin expression and muscle-terminal differentiation, reveal a new mechanism of MBD2 regulation by FAK family tyrosine kinases, and provide a link between cell adhesion and chromatin remodelling.
Proceedings of the National Academy of Sciences, 2003
Most of the genes that are central to the process of skeletal muscle differentiation remain in a transcriptionally silent or ''off'' state until muscle cells (myoblasts) are induced to differentiate. Although the mechanisms that contribute to this phenomenon are still unclear, it is likely that histone deacetylases (HDACs), which play an important role in the repression of genes, are principally involved. Recent studies indicate that the initiator of the myogenic program, namely MyoD, can associate with the deacetylase HDAC1 in vivo, and because HDACs are usually recruited to promoters by specific proteins, we considered the possibility that these two proteins might be acting together at the promoters of musclespecific genes to repress their transcription in myoblasts. In this work, we show by chromatin immunoprecipitation (ChIP) assays that MyoD and HDAC1 are both occupying the promoter of myogenin and that this gene is in a region of repressed chromatin, as revealed by enrichment in histone H3 lysine 9 (Lys-9) methylation and the underacetylation of histones. Surprisingly, after the myoblasts are induced to differentiate, the promoter becomes absent of HDAC1, and eventually the acetyltransferase P͞CAF takes it place alongside MyoD. In addition, enrichment of histone H3 acetylation (Lys-9͞14) and phosphorylation of Ser-10 can now be observed at the myogenin promoter. These data strongly suggest that in addition to its widely accepted role as an activator of differentiation-specific genes, MyoD also can perform as a transcriptional repressor in proliferating myoblasts while in partnership with a HDAC.
Journal of Cellular Biochemistry, 2009
It is known that the MyoD family members (MyoD, Myf5, myogenin, and MRF4) play a pivotal role in the complex mechanism of skeletal muscle cell differentiation. However, fragmentary information on transcription factor-specific regulation is available and data on their post-transcriptional and post-translational behavior are still missing. In this work, we combined mRNA and protein expression analysis with their subcellular localization. Each myogenic regulator factor (MRF) revealed a specific mRNA trend and a protein quantitative analysis not overlapping, suggesting the presence of post-transcriptional mechanisms. In addition, each MRF showed a specific behavior in situ, characterized by a differentiation stage-dependent localization suggestive of a post-translational regulation also. Consistently with their transcriptional activity, immunogold electron microscopy data revealed MRFs distribution in interchromatin domains. Our results showed a MyoD and Myf5 contrasting expression profile in proliferating myoblasts, as well as myogenin and MRF4 opposite distribution in the terminally differentiated myotubes. Interestingly, MRFs expression and subcellular localization analysis during C2C12 cell differentiation stages showed two main MRFs regulation mechanisms: (i) the protein half-life regulation to modulate the differentiation stage-dependent transcriptional activity and (ii) the cytoplasmic retention, as a translocation process, to inhibit the transcriptional activity. Therefore, our results exhibit that MRFs nucleo-cytoplasmic trafficking is involved in muscle differentiation and suggest that, besides the MRFs expression level, also MRFs subcellular localization, related to their functional activity, plays a key role as a regulatory step in transcriptional control mechanisms. J. Cell. Biochem. 108: 1302–1317, 2009. © 2009 Wiley-Liss, Inc.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Cell Stem Cell, 2016
Journal of Biological Chemistry, 2001
PLoS ONE, 2012
The EMBO Journal, 2010
Stem cell reports, 2016
Nature communications, 2018
The Journal of Cell Biology, 2011
Nature Communications
Stem Cell Research & Therapy, 2011
Stem Cell Investigation, 2018
Genes & Development, 2015