Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2016, Journal of Logic and Computation
…
72 pages
1 file
The present paper aims at establishing formal connections between correspondence phenomena, well known from the area of modal logic, and the theory of display calculi, originated by Belnap. These connections have been seminally observed and exploited by Marcus Kracht, in the context of his characterization of the modal axioms (which he calls primitive formulas) which can be effectively transformed into 'analytic' structural rules of display calculi. In this context, a rule is 'analytic' if adding it to a display calculus preserves Belnap's cut-elimination theorem. In recent years, the state-of-the-art in correspondence theory has been uniformly extended from classical modal logic to diverse families of nonclassical logics, ranging from (bi-)intuitionistic (modal) logics, linear, relevant and other substructural logics, to hybrid logics and mu-calculi. This generalization has given rise to a theory called unified correspondence, the most important technical tools of which are the algorithm ALBA, and the syntactic characterization of Sahlqvisttype classes of formulas and inequalities which is uniform in the setting of normal DLE-logics (logics the algebraic semantics of which is based on bounded distributive lattices). We apply unified correspondence theory, with its tools and insights, to extend Kracht's results and prove his claims in the setting of DLE-logics. The results of the present paper characterize the space of properly displayable DLE-logics.
arXiv (Cornell University), 2016
We extend the theory of unified correspondence to a very broad class of logics with algebraic semantics given by varieties of normal lattice expansions (LEs), also known as 'lattices with operators'. Specifically, we introduce a very general syntactic definition of the class of Sahlqvist formulas and inequalities, which applies uniformly to each LE-signature and is given purely in terms of the order-theoretic properties of the algebraic interpretations of the logical connectives. Together with this, we introduce a variant of the algorithm ALBA, specific to the setting of LEs, which effectively computes first-order correspondents of LE-inequalities, and is guaranteed to succeed on a wide class of inequalities (the so-called inductive inequalities) which significantly extend the Sahlqvist class. Further, we show that every inequality on which ALBA succeeds is canonical. The projection of these results yields state-of-the-art correspondence theory for many well known substructural logics, such as the Lambek calculus and its extensions, the Lambek-Grishin calculus, the logic of (not necessarily distributive) de Morgan lattices, and the multiplicative-additive fragment of linear logic.
arXiv (Cornell University), 2020
We introduce proper display calculi for basic monotonic modal logic, the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of proper display calculi, starting from a semantic analysis which motivates syntactic translations from single-type non-normal modal logics to multi-type normal poly-modal logics.
2019
We introduce proper display calculi for basic monotonic modal logic, the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic.
Journal of Logic and Computation
The unified correspondence theory for distributive lattice expansion logics (DLE-logics) is specialized to strict implication logics. As a consequence of a general semantic consevativity result, a wide range of strict implication logics can be conservatively extended to Lambek Calculi over the bounded distributive full non-associative Lambek calculus (BDFNL). Many strict implication sequents can be transformed into analytic rules employing one of the main tools of unified correspondence theory, namely (a suitably modified version of) the Ackermann lemma based algorithm ALBA. Gentzen-style cut-free sequent calculi for BDFNL and its extensions with analytic rules which are transformed from strict implication sequents, are developed.
Journal of Symbolic Logic, vol.68(4), pp.1403-1414, 2003
It is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints’ result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof.
Metascience, 2014
The volume under review contains work dedicated to the memory of Leo Esakia, who died in 2010, after having worked for over 40 years towards developing duality theory for modal and intuitionistic logics. The collection comprises ten technical contributions that follow the first chapter, in which the reader can find information on Esakia's studies and career, as well as a complete list of his research publications. In the sequel, we will refer briefly to each of these ten chapters, following the order in the list of contents. B. Jónsson and A. Tarski, in two papers they published in the early 1950s in the American Journal of Mathematics, initiated the study of duality for Boolean algebras with additional operations, via the theory of canonical extensions. Esakia was among the first researchers who studied duality for lattices with additional operations [Topological Kripke models. Soviet Math. Dokl. 15 (1974), 147-151], in particular for Heyting algebras and S4 modal algebras. M. Gehrke, author of the second chapter, shows how distributive lattices, Heyting algebras and S4 modal algebras can be viewed as certain maps between distributive lattices and Boolean algebras. Furthermore, he shows how Stone duality follows from the canonical extension results and how both Priestley and Esakia duality can be derived from Stone duality. In the third chapter, N. Bezhanishvili, S. Ghilardi and M. Jibladze discuss the step-by-step method, i.e. how duality theory can be used to arrive at descriptions of finitely generated free algebras, thus shedding light on issues concerning modal propositional logics. The authors begin by recalling how this method works for free rank one modal logics and then, exploiting the method developed by D. Coumans and S. Van Gool [On generalizing free algebras for a functor. J. Logic Comput. 23 (2012), 645-672], show how it can be extended to work for logics of rank greater than one, such as T, K4 and S4. The paper ends with
arXiv: Logic, 2018
In this paper we extend the research programme in algebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we generalise the residuated frames in [16] to arbitrary signatures of normal lattice expansions (LE). Such a generalization provides a valuable tool for proving important properties of LE-logics in full uniformity. We prove semantic cut elimination for the display calculi D.LE associated with the basic normal LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the finite model property (FMP) for each such calculus D.LE, as well as for its extensions with analytic structural rules satisfying certain additional properties.
2021
We introduce labelled sequent calculi for quantified modal logics with definite descriptions. We prove that these calculi have the good structural properties of G3-style calculi. In particular, all rules are height-preserving invertible, weakening and contraction are height-preserving admissible and cut is syntactically admissible. Finally, we show that each calculus gives a proof-theoretic characterization of validity in the corresponding class of models.
Annals of Pure and Applied Logic, 2012
We define the algorithm ALBA for the language of the same distributive modal logic (DML) for which a Sahlqvist theorem was proved by Gehrke, Nagahashi, and Venema. Successful executions of ALBA compute the local first-order correspondents of input DML inequalities, and also guarantee their canonicity. The class of inequalities on which ALBA is successful is strictly larger than the newly introduced class of inductive inequalities, which in its turn properly extends the Sahlqvist inequalities of Gehrke et al. Evidence is given to the effect that, as their name suggests, inductive inequalities are the distributive counterparts of the inductive formulas of Goranko and Vakarelov in the classical setting.
2010
We introduce a Gentzen-style modal predicate logic and prove the cutelimination theorem for it. This sequent calculus of cut-free proofs is chosen as a proxy to develop the proof-theory of the logics introduced in [14, 15, 4]. We present syntactic proofs for all the metatheoretical results that were proved model-theoretically in loc. cit. and moreover prove that the form of weak reflection proved in these papers is as strong as possible.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal of Logic, Language and Information, vol.16(1), pp.35-61, 2007
Journal of Symbolic Logic, 1986
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 1966
Logical Methods in Computer Science, 2006
EPiC series in computing, 2018
Logic Journal of The Igpl / Bulletin of The Igpl, 1999
Mathematical Society of Japan Memoirs, 1998
EPiC series in computing, 2018
Logic Journal of IGPL, 1997