Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2002, Lecture Notes in Computer Science
…
12 pages
1 file
A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of handlabeled examples. Labeling large amount of data is a costly process which in many cases is prohibitive. In this paper we show how the use of a small number of labeled data together with a large number of unlabeled data can create high-accuracy classifiers. Our approach does not rely on any parametric assumptions about the data as it is usually the case with generative methods widely used in semi-supervised learning. We propose new discriminant algorithms handling both labeled and unlabeled data for training classification models and we analyze their performances on different information access problems ranging from text span classification for text summarization to e-mail spam detection and text classification.
Principles of Data Mining and Knowledge Discovery, 2000
Supervised learning algorithms usually require large amounts of training data to learn reasonably accurate classifiers. Yet, for many text classification tasks, providing labeled training documents is expensive, while unlabeled documents are readily available in large quantities. Learning from both, labeled and unlabeled documents, in a semisupervised framework is a promising approach to reduce the need for labeled training documents. This paper compares three commonly applied text classifiers in the light of semi-supervised learning, namely a linear support vector machine, a similarity-based tfidf and a Naïve Bayes classifier. Results on a real-world text datasets show that these learners may substantially benefit from using a large amount of unlabeled documents in addition to some labeled documents.
In many important text classi cation problems, acquiring class labels for training documents is costly, while gathering large quantities of unlabeled data is cheap. This paper shows that the accuracy of text classi ers trained with a small number of labeled documents can be improved by augmenting this small training set with a large pool of unlabeled documents. We present a theoretical argument showing that, under common assumptions, unlabeled data contain information about the target function. We then introduce an algorithm for learning from labeled and unlabeled text based on the combination of Expectation-Maximization with a naive Bayes classi er. The algorithm rst trains a classi er using the available labeled documents, and probabilistically labels the unlabeled documents; it then trains a new classi er using the labels for all the documents, and iterates to convergence. Experimental results, obtained using text from three di erent realworld tasks, show that the use of unlabeled data reduces classi cation error by up to 33%.
Artificial Intelligence Review
A huge amount of data is generated daily leading to big data challenges. One of them is related to text mining, especially text classification. To perform this task we usually need a large set of labeled data that can be expensive, time-consuming, or difficult to be obtained. Considering this scenario semi-supervised learning (SSL), the branch of machine learning concerned with using labeled and unlabeled data has expanded in volume and scope. Since no recent survey exists to overview how SSL has been used in text classification, we aim to fill this gap and present an up-to-date review of SSL for text classification. We retrieve 1794 works from the last 5 years from IEEE Xplore, ACM Digital Library, Science Direct, and Springer. Then, 157 articles were selected to be included in this review. We present the application domain, datasets, and languages employed in the works. The text representations and machine learning algorithms. We also summarize and organize the works following a recent taxonomy of SSL. We analyze the percentage of labeled data used, the evaluation metrics, and obtained results. Lastly, we present some limitations and future trends in the area. We aim to provide researchers and practitioners with an outline of the area as well as useful information for their current research.
2010
This lecture focused on methods of combining labeled and unlabeled data to learn a classifier. As a motivating example, suppose we would like to classify web pages as either fraudulent or not fraudulent. In this case, obtaining unlabeled data (i.e., webpages) is easy. However, labeling such data can be very costly since it requires humans to manually look at each webpage and determine whether or not it is a scam. We might hope that by making use of the unlabeled data in a clever way, we could learn a classifier without requiring as much labeled data as we would normally need. In this lecture, we consider two learning models: semi-supervised learning, and active learning.
Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM '10, 2010
Rule based systems for processing text data encode the knowledge of a human expert into a rule base to take decisions based on interactions of the input data and the rule base. Similarly, supervised learning based systems can learn patterns present in a given dataset to make decisions on similar and other related data. Performances of both these classes of models are largely dependent on the training examples seen by them, based on which the learning was performed. Even though trained models might fit well on training data, the accuracies they yield on a new test data may be considerably different. Computing the accuracy of the learnt models on new unlabeled datasets is a challenging problem requiring costly labeling, and which is still likely to only cover a subset of the new data because of the large sizes of datasets involved. In this paper, we present a method to estimate the accuracy of a given model on a new dataset without manually labeling the data. We verify our method on large datasets for two shallow text processing tasks: document classification and postal address segmentation, and using both supervised machine learning methods and human generated rule based models.
We compare two recently proposed frameworks for combining generative and discriminative probabilistic classifiers and apply them to semi-supervised classification. In both cases we explore the tradeoff between maximizing a discriminative likelihood of labeled data and a generative likelihood of labeled and unlabeled data. While prominent semi-supervised learning methods assume low density regions between classes or are subject to generative modeling assumptions, we conjecture that hybrid generative/discriminative methods allow semi-supervised learning in the presence of strongly overlapping classes and reduce the risk of modeling structure in the unlabeled data that is irrelevant for the specific classification task of interest. We apply both hybrid approaches within naively structured Markov random field models and provide a thorough empirical comparison with two well-known semi-supervised learning methods on six text classification tasks. A semi-supervised hybrid generative/discriminative method provides the best accuracy in 75% of the experiments, and the multi-conditional learning hybrid approach achieves the highest overall mean accuracy across all tasks.
We describe a method for improving the classi- fication of short text strings using a combination of labeled training data plus a secondary corpus of unlabeled but related longer documents. We show that such unlabeled background knowledge can greatly decrease error rates, particularly if the number of examples or the size of the strings in the training set is small.
2009
Abstract. The field of semi-supervised learning has been expanding rapidly in the past few years, with a sheer increase in the number of related publications. In this paper we present the SSL problem in contrast with supervised and unsupervised learning. In addition, we propose a taxonomy with which we categorize many existing approaches described in the literature based on their underlying framework, data representation, and algorithmic class.
INTERNATIONAL JOINT CONFERENCE ON …, 2003
This paper investigates a new approach for training discriminant classifiers when only a small set of labeled data is available together with a large set of unlabeled data. This algorithm optimizes the classification maximum likelihood of a set of labeledunlabeled data, using a variant form of the Classification Expectation Maximization (CEM) algorithm. Its originality is that it makes use of both unlabeled data and of a probabilistic misclassification model for these data. The parameters of the labelerror model are learned together with the classifier parameters. We demonstrate the effectiveness of the approach on four data-sets and show the advantages of this method over a previously developed semi-supervised algorithm which does not consider imperfections in the labeling process.
2007
Traditional supervised classification algorithms require a large number of labelled examples to perform accurately. Semi-supervised classification algorithms attempt to overcome this major limitation by also using unlabelled examples. Unlabelled examples have also been used to improve nearest neighbour text classification in a method called bridging. In this paper, we propose the use of bridging in a semi-supervised setting. We introduce a new bridging algorithm that can be used as a base classifier in any supervised approach such as co-training or selflearning. We empirically show that classification performance increases by improving the semi-supervised algorithm's ability to correctly assign labels to previouslyunlabelled data.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
IEEE Transactions on Neural Networks, 2003
2008 International Conference on Computational Intelligence and Security, 2008
Proceedings of the 2004 SIAM International Conference on Data Mining, 2004
… The 30th European …, 2008
arXiv (Cornell University), 2018
Computers in Human Behavior, 2014
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02, 2002
Information Retrieval, 2009
Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, 2018
Lecture Notes in Computer Science, 2014
Lecture Notes in Computer Science, 2007