Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012
…
3 pages
1 file
Recently de La Torre et al. [1] reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of an entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that such universality would not be sufficient for the result, whereas local discriminability and the qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a byproduct we also provide a short proof of universality of C-NOT for CQT.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995
We show that in quantum computation almost every gate that operates on two or more bits is a universal gate. We discuss various physical considerations bearing on the proper definition of universality for computational components such as logic gates.
New Journal of Physics, 2007
In this article, we build a framework allowing for a systematic investigation of the fundamental issue: "Which quantum states serve as universal resources for measurement-based (one-way) quantum computation?" We start our study by reexamining what is exactly meant by "universality" in quantum computation, and what the implications are for universal one-way quantum computation. Given the framework of a measurement-based quantum computer, where quantum information is processed by local operations only, we find that the most general universal one-way quantum computer is one which is capable of accepting arbitrary classical inputs and producing arbitrary quantum outputs-we refer to this property as CQ-universality. We then show that a systematic study of CQ-universality in one-way quantum computation is possible by identifying entanglement features that are required to be present in every universal resource. In particular, we find that a large class of entanglement measures must reach its supremum on every universal resource. These insights are used to identify several families of states as being not universal, such as 1D cluster states, GHZ states, W states, and ground states of non-critical 1D spin systems. Our criteria are strengthened by considering the efficiency of a quantum computation, and we find that entanglement measures must obey a certain scaling law with the system size for all efficient universal resources. This again leads to examples of non-universal resources, such as, e.g., ground states of critical 1D spin systems. On the other hand, we provide several examples of efficient universal resources, namely graph states corresponding to hexagonal, triangular and Kagome lattices. Finally, we consider the more general notion of encoded CQ-universality, where quantum outputs are allowed to be produced in an encoded form. Again we provide entanglement-based criteria for encoded universality. Moreover, we present a general procedure to construct encoded universal resources.
Physical Review A, 2003
We study non-local two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of non-local gates is a 3-Torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-Torus. Since different points on the 3-Torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of non-local gates. We find that exactly half the non-local gates are perfect entanglers. We also investigate the nonlocal operations generated by a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we explicitly construct a quantum circuit that contains at most three non-local gates generated by a two-body interaction Hamiltonian, together with at most four local gates generated by single qubit terms. We prove that such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient implementation of universal quantum computation and simulation.
Physical Review A, 2013
We explore a model of the world based on real-vector-space quantum theory. In our model the familiar complex phase appearing in quantum states is replaced by a single binary object that we call the ubit, which is not localized and which can interact with any object in the world. Ordinary complex-vector-space quantum theory can be recovered from this model if we simply impose a certain restriction on the sets of allowed measurements and transformations (Stueckelberg's rule), but in this paper we try to obtain the standard theory, or a close approximation to it, without invoking such a restriction. We look particularly at the effective theory that applies to a subsystem when the ubit is interacting with a much larger environment. In a certain limit it turns out that the ubit-environment interaction has the effect of enforcing Stueckelberg's rule automatically, and we obtain a one-parameter family of effective theories-modifications of standard quantum theorythat all satisfy this rule. The one parameter is the ratio s/ω, where s quantifies the strength of the ubit's interaction with the rest of the world and ω is the ubit's rotation rate. We find that when this parameter is small but not zero, the effective theory is similar to standard quantum theory but is characterized by spontaneous decoherence of isolated systems.
Mathematica Slovaca, 2004
Quantum computation has suggested new forms of quantum logic, called quantum computational logics ([CDCGL01]). The basic semantic idea is the following: the meaning of a sentence is identified with a quregister, representing a possible pure state of a compound physical system, whose associated Hilbert space is an n-fold tensor product ⊗ n C 2 . The generalization to density operators, which might be useful to analyse entanglement-phenomena, is due to Gudder [Gu03]. In this paper we study structural properties of density operators systems, where some basic quantum logical gates are defined. We introduce the notions of standard reversible and standard irreversible quantum computational structure. We prove that the second structure is isomorphic to an algebra based on a particular set of complex numbers.
Handbook of Quantum Logic and Quantum Structures, 2007
Scientific reports, 2015
Distinguishability is a fundamental and operational measure generally connected to information applications. In quantum information theory, from the postulates of quantum mechanics it often has an intrinsic limitation, which then dictates and also characterises capabilities of related information tasks. In this work, we consider discrimination between bipartite two-qubit unitary transformations by local operations and classical communication (LOCC) and its relations to entangling capabilities of given unitaries. We show that a pair of entangling unitaries which do not contain local parts, if they are perfectly distinguishable by global operations, can also be perfectly distinguishable by LOCC. There also exist non-entangling unitaries, e.g. local unitaries, that are perfectly discriminated by global operations but not by LOCC. The results show that capabilities of LOCC are strictly restricted than global operations in distinguishing bipartite unitaries for a finite number of repetit...
Construction of explicit quantum circuits follows the notion of the "standard circuit model" introduced in the solid and profound analysis of elementary gates providing quantum computation. Nevertheless the model is not always optimal (e.g. concerning the number of computational steps) and it neglects physical systems which cannot follow the "standard circuit model" analysis. We propose a computational scheme which overcomes the notion of the transposition from classical circuits providing a computation scheme with the least possible number of Hamiltonians in order to minimize the physical resources needed to perform quantum computation and to succeed a minimization of the computational procedure (minimizing the number of computational steps needed to perform an arbitrary unitary transformation). It is a general scheme of construction, independent of the specific system used for the implementation of the quantum computer. The open problem of controllability in Li...
Theoretical Computer Science, 2008
Manin, Feynman, and Deutsch have viewed quantum computing as a kind of universal physical simulation procedure. Much of the writing about quantum logic circuits and quantum Turing machines has shown how these machines can simulate an arbitrary unitary transformation on a finite number of qubits. The problem of universality has been addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani as well as Kitaev and Solovay. The quantum logic circuit model, developed by Feynman and Deutsch, has been more prominent in the research literature than Deutsch's quantum Turing machines. Quantum Turing machines form a class closely related to deterministic and probabilistic Turing machines and one might hope to find a universal machine in this class. A universal machine is the basis of a notion of programmability. The extent to which universality has in fact been established by the pioneers in the field is examined and this key notion in theoretical computer science is scrutinised in quantum computing by distinguishing various connotations and concomitant results and problems.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Invertibility of Continuous-variable quantum neural networks based on the Clifford Subsets, 2019
Physical Review A, 2009
Physical Review A, 2011
Journal of Experimental and Theoretical Physics Letters, 2003
Probing the Structure of Quantum Mechanics - Nonlinearity, Nonlocality, Computation and Axiomatics, 2002
Acta Physica Hungarica A) Heavy Ion Physics, 2001
International Journal of Theoretical Physics, 2000
Physical Review A
Lecture Notes in Computer Science, 2014
Physical Review A, 2011
arXiv Quantum Physics, 2019
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011