Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003, Current Issues in Linguistic Theory
…
10 pages
1 file
We investigate how a residual network can learn to predict the dynamics of interacting shapes purely as an image-to-image regression task. With a simple 2d physics simulator, we generate short sequences composed of rectangles put in motion by applying a pulling force at a point picked at random. The network is trained with a quadratic loss to predict the image of the resulting configuration, given the image of the starting configuration and an image indicating the point of grasping. Experiments show that the network learns to predict accurately the resulting image, which implies in particular that (1) it segments rectangles as distinct components, (2) it infers which one contains the grasping point, (3) it models properly the dynamic of a single rectangle, including the torque, (4) it detects and handles collisions to some extent, and (5) it re-synthesizes properly the entire scene with displaced rectangles.
Lecture Notes in Computer Science, 2016
What happens if one pushes a cup sitting on a table toward the edge of the table? How about pushing a desk against a wall? In this paper, we study the problem of understanding the movements of objects as a result of applying external forces to them. For a given force vector applied to a specific location in an image, our goal is to predict long-term sequential movements caused by that force. Doing so entails reasoning about scene geometry, objects, their attributes, and the physical rules that govern the movements of objects. We design a deep neural network model that learns long-term sequential dependencies of object movements while taking into account the geometry and appearance of the scene by combining Convolutional and Recurrent Neural Networks. Training our model requires a large-scale dataset of object movements caused by external forces. To build a dataset of forces in scenes, we reconstructed all images in SUN RGB-D dataset in a physics simulator to estimate the physical movements of objects caused by external forces applied to them. Our Forces in Scenes (ForScene) dataset contains 10,335 images in which a variety of external forces are applied to different types of objects resulting in more than 65,000 object movements represented in 3D. Our experimental evaluations show that the challenging task of predicting longterm movements of objects as their reaction to external forces is possible from a single image.
2019
Endowing robots with human-like physical reasoning abilities remains challenging. We argue that existing methods often disregard spatio-temporal relations and by using Graph Neural Networks (GNNs) that incorporate a relational inductive bias, we can shift the learning process towards exploiting relations. In this work, we learn action-conditional forward dynamics models of a simulated manipulation task from visual observations involving cluttered and irregularly shaped objects. We investigate two GNN approaches and empirically assess their capability to generalize to scenarios with novel and an increasing number of objects. The first, Graph Networks (GN) based approach, considers explicitly defined edge attributes and not only does it consistently underperform an auto-encoder baseline that we modified to predict future states, our results indicate how different edge attributes can significantly influence the predictions. Consequently, we develop the AutoPredictor that does not rely ...
Robotics: Science and Systems XV, 2019
We study the problem of learning physical object representations for robot manipulation. Understanding object physics is critical for successful object manipulation, but also challenging because physical object properties can rarely be inferred from the object's static appearance. In this paper, we propose DensePhysNet, a system that actively executes a sequence of dynamic interactions (e.g., sliding and colliding), and uses a deep predictive model over its visual observations to learn dense, pixel-wise representations that reflect the physical properties of observed objects. Our experiments in both simulation and real settings demonstrate that the learned representations carry rich physical information, and can directly be used to decode physical object properties such as friction and mass. The use of dense representation enables DensePhysNet to generalize well to novel scenes with more objects than in training. With knowledge of object physics, the learned representation also leads to more accurate and efficient manipulation in downstream tasks than the state-of-the-art. Video is available at http://zhenjiaxu.com/ DensePhysNet
2020
Robotic manipulation can be formulated as inducing a sequence of spatial displacements: where the space being moved can encompass an object, part of an object, or end effector. In this work, we propose the Transporter Network, a simple model architecture that rearranges deep features to infer spatial displacements from visual input - which can parameterize robot actions. It makes no assumptions of objectness (e.g. canonical poses, models, or keypoints), it exploits spatial symmetries, and is orders of magnitude more sample efficient than our benchmarked alternatives in learning vision-based manipulation tasks: from stacking a pyramid of blocks, to assembling kits with unseen objects; from manipulating deformable ropes, to pushing piles of small objects with closed-loop feedback. Our method can represent complex multi-modal policy distributions and generalizes to multi-step sequential tasks, as well as 6DoF pick-and-place. Experiments on 10 simulated tasks show that it learns faster ...
2019 International Conference on Robotics and Automation (ICRA), 2019
This work provides an architecture that incorporates depth and tactile information to create rich and accurate 3D models useful for robotic manipulation tasks. This is accomplished through the use of a 3D convolutional neural network (CNN). Offline, the network is provided with both depth and tactile information and trained to predict the object's geometry, thus filling in regions of occlusion. At runtime, the network is provided a partial view of an object. Tactile information is acquired to augment the captured depth information. The network can then reason about the object's geometry by utilizing both the collected tactile and depth information. We demonstrate that even small amounts of additional tactile information can be incredibly helpful in reasoning about object geometry. This is particularly true when information from depth alone fails to produce an accurate geometric prediction. Our method is benchmarked against and outperforms other visual-tactile approaches to general geometric reasoning. We also provide experimental results comparing grasping success with our method.
Robotics: Science and Systems XV, 2019
Planning for robotic manipulation requires reasoning about the changes a robot can affect on objects. When such interactions can be modelled analytically, as in domains with rigid objects, efficient planning algorithms exist. However, in both domestic and industrial domains, the objects of interest can be soft, or deformable, and hard to model analytically. For such cases, we posit that a data-driven modelling approach is more suitable. In recent years, progress in deep generative models has produced methods that learn to 'imagine' plausible images from data. Building on the recent Causal InfoGAN generative model, in this work we learn to imagine goal-directed object manipulation directly from raw image data of self-supervised interaction of the robot with the object. After learning, given a goal observation of the system, our model can generate an imagined plan-a sequence of images that transition the object into the desired goal. To execute the plan, we use it as a reference trajectory to track with a visual servoing controller, which we also learn from the data as an inverse dynamics model. In a simulated manipulation task, we show that separating the problem into visual planning and visual tracking control is more sample efficient and more interpretable than alternative datadriven approaches. We further demonstrate our approach on learning to imagine and execute in 3 environments, the final of which is deformable rope manipulation on a PR2 robot.
ArXiv, 2019
In recent years, graph neural networks have been successfully applied for learning the dynamics of complex and partially observable physical systems. However, their use in therobotics domain is, to date, still limited. In this paper, we introduce Belief Regulated Dual Propagation Networks (BRDPN), a general purpose learnable physics engine, which enables a robot to predict the effects of its actions in scenes containing groups of articulated multi-part objects. Specifically, our framework extends the recently proposed propagation networks (PropNets) and consists of two complementary components, a physics predictor and a belief regulator. While the former predicts the future states of the object(s) manipulated by the robot, the latter constantly corrects the robots knowledge regarding the objects and their relations. Our results showed that after trained in a simulator, the robot could reliably predict the consequences of its actions in object trajectory level and exploit its own int...
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019
Physics-based manipulation in clutter involves complex interaction between multiple objects. In this paper, we consider the problem of learning, from interaction in a physics simulator, manipulation skills to solve this multi-step sequential decision making problem in the real world. Our approach has two key properties: (i) the ability to generalize and transfer manipulation skills (over the type, shape, and number of objects in the scene) using an abstract imagebased representation that enables a neural network to learn useful features; and (ii) the ability to perform look-ahead planning in the image space using a physics simulator, which is essential for such multi-step problems. We show, in sets of simulated and real-world experiments (video available on https://youtu.be/EmkUQfyvwkY), that by learning to evaluate actions in an abstract image-based representation of the real world, the robot can generalize and adapt to the object shapes in challenging real-world environments.
IEEE Robotics and Automation Letters, 2022
We introduce the Universal Manipulation Policy Network (UMPNet) -a single image-based policy network that infers closed-loop action sequences for manipulating articulated objects. To infer a wide range of action trajectories, the policy supports 6DoF action representation and varying trajectory length. To handle a diverse set of objects, the policy learns from objects with different articulation structures and generalizes to unseen objects or categories. The policy is trained with selfguided exploration without any human demonstrations, scripted policy, or pre-defined goal conditions. To support effective multistep interaction, we introduce a novel Arrow-of-Time action attribute that indicates whether an action will change the object state back to the past or forward into the future. With the Arrow-of-Time inference at each interaction step, the learned policy is able to select actions that consistently lead towards or away from a given state, thereby, enabling both effective state exploration and goal-conditioned manipulation.
Robotics: Science and Systems XVIII
Modeling and manipulating elasto-plastic objects are essential capabilities for robots to perform complex industrial and household interaction tasks (e.g., stuffing dumplings, rolling sushi, and making pottery). However, due to the high degree of freedom of elasto-plastic objects, significant challenges exist in virtually every aspect of the robotic manipulation pipeline, e.g., representing the states, modeling the dynamics, and synthesizing the control signals. We propose to tackle these challenges by employing a particle-based representation for elasto-plastic objects in a model-based planning framework. Our system, RoboCraft, only assumes access to raw RGBD visual observations. It transforms the sensing data into particles and learns a particle-based dynamics model using graph neural networks (GNNs) to capture the structure of the underlying system. The learned model can then be coupled with model-predictive control (MPC) algorithms to plan the robot's behavior. We show through experiments that with just 10 minutes of real-world robotic interaction data, our robot can learn a dynamics model that can be used to synthesize control signals to deform elasto-plastic objects into various target shapes, including shapes that the robot has never encountered before. We perform systematic evaluations in both simulation and the real world to demonstrate the robot's manipulation capabilities and ability to generalize to a more complex action space, different tool shapes, and a mixture of motion modes. We also conduct comparisons between RoboCraft and untrained human subjects controlling the gripper to manipulate deformable objects in both simulation and the real world. Our learned modelbased planning framework is comparable to and sometimes better than human subjects on the tested tasks. 1
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference, 2020
IEEE Transactions on Robotics
arXiv (Cornell University), 2018
2022 International Conference on Robotics and Automation (ICRA)
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018
Towards Autonomous Robotic Systems, 2017
Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007
Proceedings of the AAAI Conference on Artificial Intelligence
Frontiers in systems neuroscience, 2017
5th IEEE-RAS International Conference on Humanoid Robots, 2005.
The Path to Autonomous Robots, 2008
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters, 2022
2018 IEEE International Conference on Robotics and Automation (ICRA), 2018
Volume 11A: 46th Design Automation Conference (DAC), 2020