Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2019
Word embeddings are vector representations of words in an n-dimensional space used for many natural language processing tasks. A large training corpus is needed for learning good quality word embeddings. In this work, we present a method based on the node2vec algorithm for learning embeddings based on paths in a graph. We used a collection of Word Association Norms in Spanish to build a graph of word connections. The nodes of the network correspond to the words in the corpus, whereas the edges correspond to a pair of words given in a free association test. We evaluated our word vectors in human annotated benchmarks, achieving better results than those trained on a billion-word corpus such as, word2vec, fasttext, and glove.
Semantic Web
Word embeddings are powerful for many tasks in natural language processing. In this work, we learn word embeddings using weighted graphs from word association norms (WAN) with the node2vec algorithm. Although building WAN is a difficult and time-consuming task, training the vectors from these resources is a fast and efficient process. This allows us to obtain good quality word embeddings from small corpora. We evaluate our word vectors in two ways: intrinsic and extrinsic. The intrinsic evaluation was performed with several word similarity benchmarks, WordSim-353, MC30, MTurk-287, MEN-TR-3k, SimLex-999, MTurk-771 and RG-65, and different similarity measures achieving better results than those obtained with word2vec, GloVe, and fastText, trained on a huge corpus. The extrinsic evaluation was done by measuring the quality of sentence embeddings using transfer tasks: sentiment analysis, paraphrase detection, natural language inference, and semantic textual similarity.
Progresses in Artificial Intelligence and Neural Systems
Word representation is fundamental in NLP tasks, because it is precisely from the coding of semantic closeness between words that it is possible to think of teaching a machine to understand text. Despite the spread of word embedding concepts, still few are the achievements in linguistic contexts other than English. In this work, analysing the semantic capacity of the Word2Vec algorithm, an embedding for the Italian language is produced. Parameter setting such as the number of epochs, the size of the context window and the number of negatively backpropagated samples is explored.
PeerJ Computer Science
The subjectiveness of multimedia content description has a strong negative impact on tag-based information retrieval. In our work, we propose enhancing available descriptions by adding semantically related tags. To cope with this objective, we use a word embedding technique based on the Word2Vec neural network parameterized and trained using a new dataset built from online newspapers. A large number of news stories was scraped and pre-processed to build a new dataset. Our target language is Portuguese, one of the most spoken languages worldwide. The results achieved significantly outperform similar existing solutions developed in the scope of different languages, including Portuguese. Contributions include also an online application and API available for external use. Although the presented work has been designed to enhance multimedia content annotation, it can be used in several other application areas.
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 2015
We propose two improvements on lexical association used in embedding learning: factorizing individual dependency relations and using lexicographic knowledge from monolingual dictionaries. Both proposals provide low-entropy lexical cooccurrence information, and are empirically shown to improve embedding learning by performing notably better than several popular embedding models in similarity tasks.
Proceedings of the 13th International Conference on Computational Semantics - Short Papers
Word embedding learning is a technique in Natural Language Processing (NLP) to map words into vector space representations, is one of the most popular research directions in modern NLP by virtue of its potential to boost the performance of many NLP downstream tasks. Nevertheless, most of the underlying word embedding methods such as word2vec and GloVe fail to produce high-quality representations if the text corpus is small and sparse. This paper proposes a method to generate effective word embeddings from limited data. Empirically, we show that the proposed model outperforms existing works for the classical word similarity task and for a domain-specific application.
ArXiv, 2018
Recently, word embeddings have been widely adopted across several NLP applications. However, most word embedding methods solely rely on linear context and do not provide a framework for incorporating word relationships like hypernym, nmod in a principled manner. In this paper, we propose WordGCN, a Graph Convolution based word representation learning approach which provides a framework for exploiting multiple types of word relationships. WordGCN operates at sentence as well as corpus level and allows to incorporate dependency parse based context in an efficient manner without increasing the vocabulary size. To the best of our knowledge, this is the first approach which effectively incorporates word relationships via Graph Convolutional Networks for learning word representations. Through extensive experiments on various intrinsic and extrinsic tasks, we demonstrate WordGCN's effectiveness over existing word embedding approaches. We make WordGCN's source code available to enco...
2020
Word Association Norms (WAN) are collections that present stimuli words and the set of their associated responses. The corpus is widely used in diverse areas of expertise. In order to reduce the effort to have a good quality resource that can be reproduced in many languages with minimum sources, a methodology to build Automatic Word Association Norms is proposed (AWAN). The methodology has an input of two simple elements: a) dictionary, and b) pre-processed Word Embeddings. This new kind of WAN is evaluated in two ways: i) learning word embeddings based on the node2vec algorithm and comparing them with human annotated benchmarks, and ii) performing a lexical search for a reverse dictionary. Both evaluations are done in a weighted graph with the AWAN lexical elements. The results showed that the methodology produces good quality AWANs.
Proceedings of the 2nd International Conference on Complexity, Future Information Systems and Risk, 2017
The paper focuses on the study of a graph built on a Corpus of Word Association Norms for Mexican Spanish. We investigate the main features of the graph and the structure of the areas with the strongest connections. An important goal of this work is the analysis of lexical relations between the most representaive nodes in order to understand the psychological mechanisms underlying word associations.
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
Word-based embedding approaches such as Word2Vec capture the meaning of words and relations between them, particularly well when trained with large text collections; however, they fail to do so with small datasets. Extensions such as fastText reduce the amount of data needed slightly, however, the joint task of learning meaningful morphology, syntactic and semantic representations still requires a lot of data. In this paper, we introduce a new approach to warm-start embedding models with morphological information, in order to reduce training time and enhance their performance. We use word embeddings generated using both word2vec and fastText models and enrich them with morphological information of words, derived from kernel principal component analysis (KPCA) of word similarity matrices. This can be seen as explicitly feeding the network morphological similarities and letting it learn semantic and syntactic similarities. Evaluating our models on word similarity and analogy tasks in English and German, we find that they not only achieve higher accuracies than the original skip-gram and fastText models but also require significantly less training data and time. Another benefit of our approach is that it is capable of generating a high-quality representation of infrequent words as, for example, found in very recent news articles with rapidly changing vocabularies. Lastly, we evaluate the different models on a downstream sentence classification task in which a CNN model is initialized with our embeddings and find promising results.
2017
Word embeddings learned from text corpus can be improved by injecting knowledge from external resources, while at the same time also specializing them for similarity or relatedness. These knowledge resources (like WordNet, Paraphrase Database) may not exist for all languages. In this work we introduce a method to inject word embeddings of a language with knowledge resource of another language by leveraging bilingual embeddings. First we improve word embeddings of German, Italian, French and Spanish using resources of English and test them on variety of word similarity tasks. Then we demonstrate the utility of our method by creating improved embeddings for Urdu and Telugu languages using Hindi WordNet, beating the previously established baseline for Urdu.
The Journal of Supercomputing
Despite the large diffusion and use of embedding generated through Word2Vec, there are still many open questions about the reasons for its results and about its real capabilities. In particular, to our knowledge, no author seems to have analysed in detail how learning may be affected by the various choices of hyperparameters. In this work, we try to shed some light on various issues focusing on a typical dataset. It is shown that the learning rate prevents the exact mapping of the co-occurrence matrix, that Word2Vec is unable to learn syntactic relationships, and that it does not suffer from the problem of overfitting. Furthermore, through the creation of an ad-hoc network, it is also shown how it is possible to improve Word2Vec directly on the analogies, obtaining very high accuracy without damaging the pre-existing embedding. This analogy-enhanced Word2Vec may be convenient in various NLP scenarios, but it is used here as an optimal starting point to evaluate the limits of Word2Vec.
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018
Distributed representations of words learned from text have proved to be successful in various natural language processing tasks in recent times. While some methods represent words as vectors computed from text using predictive model (Word2vec) or dense count based model (GloVe), others attempt to represent these in a distributional thesaurus network structure where the neighborhood of a word is a set of words having adequate context overlap. Being motivated by recent surge of research in network embedding techniques (DeepWalk, LINE, node2vec etc.), we turn a distributional thesaurus network into dense word vectors and investigate the usefulness of distributional thesaurus embedding in improving overall word representation. This is the first attempt where we show that combining the proposed word representation obtained by distributional thesaurus embedding with the state-of-the-art word representations helps in improving the performance by a significant margin when evaluated against NLP tasks like word similarity and relatedness, synonym detection, analogy detection. Additionally, we show that even without using any handcrafted lexical resources we can come up with representations having comparable performance in the word similarity and relatedness tasks compared to the representations where a lexical resource has been used.
arXiv (Cornell University), 2017
Word embeddings have been found to provide meaningful representations for words in an efficient way; therefore, they have become common in Natural Language Processing systems. In this paper, we evaluated different word embedding models trained on a large Portuguese corpus, including both Brazilian and European variants. We trained 31 word embedding models using FastText, GloVe, Wang2Vec and Word2Vec. We evaluated them intrinsically on syntactic and semantic analogies and extrinsically on POS tagging and sentence semantic similarity tasks. The obtained results suggest that word analogies are not appropriate for word embedding evaluation; task-specific evaluations appear to be a better option.
2021
The maintenance of wordnets and lexical knwoledge bases typically relies on time-consuming manual effort. In order to minimise this issue, we propose the exploitation of models of distributional semantics, namely word embeddings learned from corpora, in the automatic identification of relation instances missing in a wordnet. Analogy-solving methods are first used for learning a set of relations from analogy tests focused on each relation. Despite their low accuracy, we noted that a portion of the top-given answers are good suggestions of relation instances that could be included in the wordnet. This procedure is applied to the enrichment of OpenWordNet-PT, a public Portuguese wordnet. Relations are learned from data acquired from this resource, and illustrative examples are provided. Results are promising for accelerating the identification of missing relation instances, as we estimate that about 17% of the potential suggestions are good, a proportion that almost doubles if some are...
ArXiv, 2021
Understanding human language has been a sub-challenge on the way of intelligent machines. The study of meaning in natural language processing (NLP) relies on the distributional hypothesis where language elements get meaning from the words that co-occur within contexts. The revolutionary idea of distributed representation for a concept is close to the working of a human mind in that the meaning of a word is spread across several neurons, and a loss of activation will only slightly affect the memory retrieval process. Neural word embeddings transformed the whole field of NLP by introducing substantial improvements in all NLP tasks. In this survey, we provide a comprehensive literature review on neural word embeddings. We give theoretical foundations and describe existing work by an interplay between word embeddings and language modeling. We provide broad coverage on neural word embeddings, including early word embeddings, embeddings targeting specific semantic relations, sense embeddi...
RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning, 2017
Word vectors with varying dimensionalities and produced by different algorithms have been extensively used in NLP. The corpora that the algorithms are trained on can contain either natural language text (e.g. Wikipedia or newswire articles) or artificially-generated pseudo corpora due to natural data sparseness. We exploit Lexical Chain based templates over Knowledge Graph for generating pseudo-corpora with controlled linguistic value. These corpora are then used for learning word embeddings. A number of experiments have been conducted over the following test sets: WordSim353 Similarity, WordSim353 Relatedness and SimLex-999. The results show that, on the one hand, the incorporation of many-relation lexical chains improves results, but on the other hand, unrestricted-length chains remain difficult to handle with respect to their huge quantity.
Zenodo (CERN European Organization for Nuclear Research), 2020
The complex nature of big data resources requires new structuring methods, especially for textual content. WordNet is a good knowledge source for the comprehensive abstraction of natural language as it offers good implementation for many languages. Since WordNet embeds natural language in the form of a complex network, a transformation mechanism, WordNet2Vec, is proposed in this paper. This creates vectors for each word from WordNet. These vectors encapsulate a general position -the role of a given word related to all other words in the given natural language. Any list or set of such vectors contains knowledge about the context of its components within the whole language. This type of word representation can be easily applied to many analytic tasks such as classification or clustering. The usefulness of the WordNet2Vec method is demonstrated in sentiment analysis including the classification of an Amazon opinion text dataset with transfer learning.
Proceedings of the 13th International Conference on Computational Semantics - Long Papers, 2019
Distributional Semantic Models (DSMs) construct vector representations of word meanings based on their contexts. Typically, the contexts of a word are defined as its closest neighbours, but they can also be retrieved from its syntactic dependency relations. In this work, we propose a new dependencybased DSM. The novelty of our model lies in associating an independent meaning representation, a matrix, with each dependency-label. This allows it to capture specifics of the relations between words and contexts, leading to good performance on both intrinsic and extrinsic evaluation tasks. In addition to that, our model has an inherent ability to represent dependency chains as products of matrices which provides a straightforward way of handling further contexts of a word.
Most word embedding algorithms such as word2vec or fastText construct two sort of vectors: for words and for contexts. Naive use of vectors of only one sort leads to poor results. We suggest using indefinite inner product in skip-gram negative sampling algorithm. This allows us to use only one sort of vectors without loss of quality. Our "context-free" cf algorithm performs on par with SGNS on word similarity datasets.
2020
Work with neural word embeddings and lexical relations has largely focused on confirmatory experiments which use human-curated examples of semantic and syntactic relations to validate against. In this paper, we explore the degree to which lexical relations, such as those found in popular validation sets, can be derived and extended from a variety of neural embeddings using classical clustering methods. We show that the Word2Vec space of word-pairs (i.e., offset vectors) significantly outperforms other more contemporary methods, even in the presence of a large number of noisy offsets. Moreover, we show that via a simple nearest neighbor approach in the offset space, new examples of known relations can be discovered. Our results speak to the amenability of offset vectors from non-contextual neural embeddings to find semantically coherent clusters. This simple approach has implications for the exploration of emergent regularities and their examples, such as emerging trends on social me...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.