Academia.eduAcademia.edu

Thermodynamic Machine Learning through Maximum Work Production

New Journal of Physics

Abstract

Adaptive systems---such as a biological organism gaining survival advantage, an autonomous robot executing a functional task, or a motor protein transporting intracellular nutrients---must model the regularities and stochasticity in their environments to take full advantage of thermodynamic resources. Analogously, but in a purely computational realm, machine learning algorithms estimate models to capture predictable structure and identify irrelevant noise in training data. This happens through optimization of performance metrics, such as model likelihood. If physically implemented, is there a sense in which computational models estimated through machine learning are physically preferred? We introduce the thermodynamic principle that work production is the most relevant performance metric for an adaptive physical agent and compare the results to the maximum-likelihood principle that guides machine learning. Within the class of physical agents that most efficiently harvest energy from...