Academia.eduAcademia.edu

Perturbation Theory for Arbitrary Coupling Strength

2016

Abstract

We present a \emph{new} formulation of perturbation theory for quantum systems, designated here as: `mean field perturbation theory'(MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of \textit{arbitrary} strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the `standard formulation of perturbation theory' ( SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the non-linearity and the analytic structure~(in the coupling-strength)~of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the grou...