Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011
■ Cognitive strategies typically involved in regulating negative emotions have recently been shown to also be effective with positive emotions associated with monetary rewards. However, it is less clear how these strategies influence behavior, such as preferences expressed during decision-making under risk, and the underlying neural circuitry. That is, can the effective use of emotion regulation strategies during presentation of a reward-conditioned stimulus influence decision-making under risk and neural structures involved in reward processing such as the striatum? To investigate this question, we asked participants to engage in imagery-focused regulation strategies during the presentation of a cue that preceded a financial decision-making phase. During the decision phase, participants then made a choice between a risky and a safe monetary lottery. Participants who successfully used cognitive regulation, as assessed by subjective ratings about perceived success and facility in implementation of strategies, made fewer risky choices in comparison with trials where decisions were made in the absence of cognitive regulation. Additionally, BOLD responses in the striatum were attenuated during decisionmaking as a function of successful emotion regulation. These findings suggest that exerting cognitive control over emotional responses can modulate neural responses associated with reward processing (e.g., striatum) and promote more goal-directed decisionmaking (e.g., less risky choices), illustrating the potential importance of cognitive strategies in curbing risk-seeking behaviors before they become maladaptive (e.g., substance abuse). ■
Neurobiology of Learning and Memory, 2015
The ability to make advantageous decisions under circumstances in which there is a risk of adverse consequences is an important component of adaptive behavior; however, extremes in risk taking (either high or low) can be maladaptive and are characteristic of a number of neuropsychiatric disorders. To better understand the contributions of various affective and cognitive factors to risky decision making, cohorts of male Long-Evans rats were trained in a "Risky Decision making Task" (RDT), in which they made discrete trial choices between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of footshock. Experiment 1 evaluated the relative contributions of the affective stimuli (i.e., punishment vs. reward) to RDT performance by parametrically varying the magnitudes of the footshock and large reward. Varying the shock magnitude had a significant impact on choice of the large, "risky" reward, such that greater magnitudes were associated with reduced choice of the large reward. In contrast, varying the large, "risky" reward magnitude had minimal influence on reward choice. Experiment 2 compared individual variability in RDT performance with performance in an attentional set shifting task (assessing cognitive flexibility), a delayed response task (assessing working memory), and a delay discounting task (assessing impulsive choice). Rats characterized as risk averse in the RDT made more perseverative errors on the set shifting task than did their risk taking counterparts, whereas RDT performance was not related to working memory abilities or impulsive choice. In addition, rats that showed greater delay discounting (greater impulsive choice) showed corresponding poorer performance in the working memory task. Together, these results suggest that reward-related decision making under risk of punishment is more strongly influenced by the punishment than by the reward, and that risky and impulsive decision making are associated with distinct components of executive function.
PloS one, 2015
Both normative and many descriptive theories of decision making under risk are based on the notion that outcomes are weighted by their probability, with subsequent maximization of the (subjective) expected outcome. Numerous investigations from psychology, economics, and neuroscience have produced evidence consistent with this notion. However, this research has typically investigated choices involving relatively affect-poor, monetary outcomes. We compared choice in relatively affect-poor, monetary lottery problems with choice in relatively affect-rich medical decision problems. Computational modeling of behavioral data and model-based neuroimaging analyses provide converging evidence for substantial differences in the respective decision mechanisms. Relative to affect-poor choices, affect-rich choices yielded a more strongly curved probability weighting function of cumulative prospect theory, thus signaling that the psychological impact of probabilities is strongly diminished for aff...
Scientific reports, 2016
Both real and hypothetical monetary rewards are widely used as reinforcers in risk taking and decision making studies. However, whether real and hypothetical monetary rewards modulate risk taking and decision making in the same manner remains controversial. In this study, we used event-related potentials (ERP) with a balloon analogue risk task (BART) paradigm to examine the effects of real and hypothetical monetary rewards on risk taking in the brain. Behavioral data showed reduced risk taking after negative feedback (money loss) during the BART with real rewards compared to those with hypothetical rewards, suggesting increased loss aversion with real monetary rewards. The ERP data demonstrated a larger feedback-related negativity (FRN) in response to money loss during risk taking with real rewards compared to those with hypothetical rewards, which may reflect greater prediction error or regret emotion after real monetary losses. These findings demonstrate differential effects of re...
Journal of Cognitive Neuroscience, 2009
Recent research has focused on decision-making under risk and its neural bases. Two kinds of bad decisions under risk may be defined: too risky decisions and too cautious decisions. Here we show that suboptimal decisions of both kinds lead to increased activity in the anterior cingulate cortex in a Blackjack gambling task. Moreover, this increased activity is related to the avoidance of the negatively evaluated decision under risk. These findings complement other results suggesting an important role of the dorsal anterior cingulate cortex in reward-based decision-making and conflict resolution.
Cognitive Affective & Behavioral Neuroscience, 2011
Emotions and their psychophysiological correlates are thought to play an important role in decision-making under risk. We used a novel gambling task to measure psychophysiological responses during selection of explicitly presented risky options and feedback processing. Active-choice trials, in which the participant had to select the size of bet, were compared to fixed-bet, no-choice trials. We further tested how the chances of winning and bet size affected choice behavior and psychophysiological arousal. Individual differences in impulsive and risk-taking traits were assessed. The behavioral results showed sensitivity to the choice requirement and to the chances of winning: Participants were faster to make a response on no-choice trials and when the chances of winning were high. In active-choice trials, electrodermal activity (EDA) increased with bet size during both selection and processing of losses. Cardiac responses were sensitive to choice uncertainty: Stronger selection-related heart rate (HR) decelerations were observed in trials with lower chances of winning, particularly on active-choice trials. Finally, betting behavior and psychophysiological responsiveness were moderately correlated with self-reported impulsivity-related traits. In conclusion, we demonstrate that psychophysiological arousal covaries with risk-sensitive decision-making outside of a learning context. Our results further highlight the differential sensitivities of EDA and HR to psychological features of the decision scenario.
Journal of Economic Behavior & Organization, 2014
House money effect Break even effect Neuroeconomics Functional magnetic resonance imaging (fMRI) Brain imaging Risky choice JEL classification: D87 a b s t r a c t Decision-makers show an increased risk appetite when they gamble with previously won money, the house money effect, and when they have a chance to make up for a prior loss, the break even effect. To explore the origins of these effects, we use functional magnetic resonance imaging to record the brain activities of subjects while they make sequential risky choices. The behavioral data from our experiment confirm the path dependence of choices, despite the short trial duration and the many task repetitions required for neuroimaging. The brain data yield evidence that the increased risk appetite after gains and losses is related to an increased activity of affective brain processes and a decreased activity of deliberative brain processes.
A B S T R A C T Cognitive emotion regulation (CER) is a critical human ability to face aversive emotional stimuli in a flexible way, via recruitment of specific prefrontal brain circuits. Animal research reveals a central role of ventral striatum in emotional behavior, for both aversive conditioning, with striatum signaling aversive prediction errors (aPE), and for integrating competing influences of distinct striatal inputs from regions such as the prefrontal cortex (PFC), amygdala, hippocampus and ventral tegmental area (VTA). Translating these ventral striatal findings from animal research to human CER, we hypothesized that successful CER would affect the balance of competing influences of striatal afferents on striatal aPE signals, in a way favoring PFC as opposed to 'subcortical' (i.e., non-isocortical) striatal inputs. Using aversive Pavlovian conditioning with and without CER during fMRI, we found that during CER, superior regulators indeed reduced the modulatory impact of 'subcortical' striatal afferents (hippocampus, amygdala and VTA) on ventral striatal aPE signals, while keeping the PFC impact intact. In contrast, inferior regulators showed an opposite pattern. Our results demonstrate that ventral striatal aPE signals and associated competing modulatory inputs are critical mechanisms underlying successful cognitive regulation of aversive emotions in humans.
Introduction: The current study aimed to elucidate the role of preparatory cognitive control in decision making and its neural correlates using functional Magnetic Resonance Imaging (fMRI). To this effect, by employing a series of new cognitive tasks, we assessed the role of preparatory cognitive control in monetary (risky) decision making. Methods: The participants had to decide between a risky and a safe gamble based on their chance of winning (high or low). In the 2-phase gambling task (similar to Cambridge gambling task), the chance and the gamble were presented at the same time (i.e. in a single phase), but in a new 3-phase gambling task, the chance is presented before the gamble. The tasks ended with a feedback phase. Results: In the 3-phase task, holding the chance in memory to guide their decision enabled the participants to have more control on their risk taking behaviors as shown by activation in a network of brain areas involved in the control and conflict, including dorsal Anterior Cingulate Cortex (dACC), indexed by faster reaction times and better performance in the gambling task, and the temporal lobe, which has a role in holding contextual information. Discussion: Holding information in memory to guide decision presumably enables the participants to have more control on their risk taking behaviors. The conflict and uncertainty resulting from this risky decision was indexed by the activation of dACC, known to be activated in conflict and cognitive control.
PLoS ONE, 2011
When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency.
Neuroscience and biobehavioral reviews, 2015
Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and ...
Journal of neurophysiology, 2015
Emotional events resulting from a choice influence an individual's subsequent decision-making. Although the relationship between emotion and decision-making has been widely discussed, previous studies have mainly investigated decision outcomes that can easily be mapped to reward and punishment, including monetary gain/loss, gustatory stimuli, and pain. These studies regard emotion as a modulator of decision-making that can be made rationally in the absence of emotions. In our daily lives, however, we often encounter various emotional events that affect decisions by themselves, and mapping the events to a reward or punishment is often not straightforward. In this study, we investigated the neural substrates of how such emotional decision outcomes affect subsequent decision-making. By using functional magnetic resonance imaging (fMRI), we measured brain activities of humans during a stochastic decision-making task in which various emotional pictures were presented as decision outc...
International Gambling Studies, 2018
Neuroimaging studies demonstrate alterations in fronto-striatal neurocircuitry in gambling disorder (GD) during anticipatory processing, which may influence decision-making impairments. However, to date little is known about fronto-striatal anticipatory processing and emotion-based decision-making. While undergoing neuroimaging, 28 GD and 28 healthy control (HC) participants performed the Monetary Incentive Delay Task (MIDT). Pearson correlation coefficients assessed out-of-scanner Iowa Gambling Task (IGT) performance with the neural activity during prospect (A1) processing on the MIDT across combined GD and HC groups. The HC and GD groups showed no significant difference in out-of-scanner IGT performance, although there was a trend for higher IGT scores in the HC group on the last two IGT trial blocks.
Neuroimage, 2010
Understanding the neurocognitive basis of risk-taking behavior is an important issue, especially in economic decision-making. Classical behavioral studies have shown that risk-attitude changes across different contexts, but little is so far known about the brain correlates of processing of outcomes across such context shifts. In this study, EEG was recorded while subjects performed a gambling task. Participants could choose between a risky and a safer option, within two different contexts: one in which options yielded gains and losses of the same magnitude (Zero Expected Value context) and another in which gains were larger than losses (Positive Expected Value context). Based on their risk-attitude, two groups were compared: subjects who are risk-seekers in the zero Expected Value context (Zero-Oriented group) and subjects who are riskseekers in the positive Expected Value condition (Positive-Oriented group). The Feedback Related Negativity (FRN) reflects this distinction, with each group being insensitive to magnitude of outcomes in the condition in which they were risk-prone. P300 amplitude mirrored the behavioral results, with larger amplitudes in the condition in which each group showed a higher risk-tendency. Source analyses highlighted the involvement of posterior cingulate cortex in risky decision-making. Taken together, the findings make a contribution to the clarification of the neurocognitive substrates of risky decision-making.
PloS one, 2012
Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel 'free-choice' versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives.
Emotion, 2010
It is well established that emotion plays a key role in human social and economic decision making. The recent literature on emotion regulation (ER), however, highlights that humans typically make efforts to control emotion experiences. This leaves open the possibility that decision effects previously attributed to acute emotion may be a consequence of acute ER strategies such as cognitive reappraisal and expressive suppression. In Study 1, we manipulated ER of laboratory-induced fear and disgust, and found that the cognitive reappraisal of these negative emotions promotes risky decisions (reduces risk aversion) in the Balloon Analogue Risk Task and is associated with increased performance in the prehunch/hunch period of the Iowa Gambling Task. In Study 2, we found that naturally occurring negative emotions also increase risk aversion in Balloon Analogue Risk Task, but the incidental use of cognitive reappraisal of emotions impedes this effect. We offer evidence that the increased effectiveness of cognitive reappraisal in reducing the experience of emotions underlies its beneficial effects on decision making.
NeuroImage, 2003
An event-related fMRI technique was used to assess neural responses to financial reward and penalty during a simple gambling task. We attempted to determine whether brain activities are dependent on the unique context of an event sequence. Thirty-six healthy volunteers participated in the study. The task was to guess the color of the suit of a card on each trial and to respond by pressing a button. Every correct response ("win") and incorrect response ("loss") was associated with financial reward and penalty, respectively. The magnitude of reward or penalty in each trial did not change; however, the subjects' self-reported emotional arousal was significantly higher for the events of "the fourth win of four wins in a row" and "the fourth loss of four losses in a row." We also found that the bilateral anterior cingulate and medial prefrontal cortices were specifically activated when the subjects experienced "the fourth win of four wins in a row" and "the fourth loss of four losses in a row. "When the subjects experienced "a win following four losses in a row" or "a loss following four wins in a row, "the right dorsolateral prefrontal cortex was specifically activated. Our data indicate that there exist brain activities associated with the event-sequence context in which abstract reward or penalty is received. These context-dependent activities appear to be crucial for adapting oneself to new circumstances and may account for clinical symptoms of various mental illnesses in which dysfunction of these regions has been reported.
2015
37 Emotional events resulting from a choice influence an individual’s subsequent 38 decision-making. Although the relationship between emotion and decision-making has 39 been widely discussed, previous studies have mainly investigated decision outcomes 40 that can easily be mapped to reward and punishment, including monetary gain/loss, 41 gustatory stimuli, and pain. These studies regard emotion as a modulator of 42 decision-making that can be made rationally in the absence of emotions. In our daily 43 lives, however, we often encounter various emotional events that affect decisions by 44 themselves, and mapping the events to a reward or punishment is often not 45 straightforward. In this study, we investigated the neural substrates of how such 46 emotional decision outcomes affect subsequent decision-making. By using functional 47 magnetic resonance imaging (fMRI), we measured brain activities of humans during a 48 stochastic decision-making task in which various emotional pictures...
NeuroImage, 2008
Incidental negative emotions unrelated to the current task, such as background anxiety, can strongly influence decisions. This is most evident in psychiatric disorders associated with generalized emotional disturbances. However, the neural mechanisms by which incidental emotions may affect choices remain poorly understood. Here we study the effects of incidental anxiety on human risky decision making, focusing on both behavioral preferences and their underlying neural processes. Although observable choices remained stable across affective contexts with high and low incidental anxiety, we found a clear change in neural valuation signals: during high incidental anxiety, activity in ventromedial prefrontal cortex and ventral striatum showed a marked reduction in (1) neural coding of the expected subjective value (ESV) of risky options, (2) prediction of observed choices, (3) functional coupling with other areas of the valuation system, and (4) baseline activity. At the same time, activity in the anterior insula showed an increase in coding the negative ESV of risky lotteries, and this neural activity predicted whether the risky lotteries would be rejected. This pattern of results suggests that incidental anxiety can shift the focus of neural valuation from possible positive consequences to anticipated negative consequences of choice options. Moreover, our findings show that these changes in neural value coding can occur in the absence of changes in overt behavior. This suggest a possible pathway by which background anxiety may lead to the development of chronic reward desensitization and a maladaptive focus on negative cognitions, as prevalent in affective and anxiety disorders.
NeuroImage, 2007
Decision making involves the allocation of cognitive resources in response to expectations and feedback. Here we explored how frontal networks respond in a gambling paradigm in which uncertainty was manipulated to increase demands for cognitive control. In one experiment, pupil diameter covaried with uncertainty during decision making and with the degree to which subsequent outcomes violated reward expectations. In a second experiment, fMRI showed that both uncertainty and unexpected outcomes modulated activation in a network of frontal regions. Thus, the frontal network supports multiple phases of the decision-making process including information regarding reward uncertainty and reward outcome. In contrast, striatal activation only tracked reward delivery, suggesting a distinct reward pathway that might, under certain circumstances, oppose the frontal network. These results are consistent with the interpretation that reward signals may bias recruitment of frontal networks that are linked to allocation of cognitive resources.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.