Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
The relative contributions of metric and chronological time in the encoding of episodic memories are unknown. One hundred one healthy young adults viewed 48 unique episodes of visual events and were later tested on recall of the order of events (chronological time) and the precise timing of events (metric time). The behavioral results show that metric recall accuracy correlates with chronological accuracy for events within episodes, but does not play a role on larger time-scales across episodes. Functional magnetic resonance imaging during encoding and recall showed that metric time was represented in the posterior medial entorhinal cortex, as well as the temporal pole and the cerebellum, whereas chronological time was represented in a widespread brain network including the anterior lateral entorhinal cortex, hippocampus, parahippocampal cortex and the prefrontal cortex. We conclude that metric time has a role in episodic memory on short time-scales and is mainly subserved by medial...
Journal of Neuroscience, 2009
There is a growing interest in how temporal order of episodic memories is represented within the medial temporal lobe (MTL). Animal studies suggest that the hippocampal formation (HF) is critical for retrieving the temporal order of past experiences. However, human imaging studies that have tested recency discrimination between pairs of previously encoded items have generally failed to report HF activation. We hypothesized that recalling a naturalistic sequence of past events would be particularly sensitive to HF function, attributable to greater involvement of associative processes. To test this prediction, we let subjects watch a novel movie and later, during functional magnetic resonance imaging, asked them to rearrange and "replay" scenes from the movie in correct order. To identify areas specifically involved in retrieval of temporal order, we used a control condition where subjects logically inferred the order of scenes from the same movie. Extensive MTL activation was observed during sequence recall. Activation within the right HF was specifically related to retrieval of temporal order and correlated positively with accuracy of sequence recall. Also, the bilateral parahippocampal cortex responded to retrieval of temporal order, but the activation here was not related to performance. Our study is the first to unequivocally demonstrate that correct sequence recall depends on HF.
2012
Episodic memory provides information about the ''when'' of events as well as ''what'' and ''where'' they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24 h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval.
Frontiers in psychology, 2017
Communications Biology, 2018
Precise time estimation is crucial in perception, action and social interaction. Previous neuroimaging studies in humans indicate that perceptual timing tasks involve multiple brain regions; however, whether the representation of time is localized or distributed in the brain remains elusive. Using ultra-high-field functional magnetic resonance imaging combined with multivariate pattern analyses, we show that duration information is decoded in multiple brain areas, including the bilateral parietal cortex, right inferior frontal gyrus and, albeit less clearly, the medial frontal cortex. Individual differences in the duration judgment accuracy were positively correlated with the decoding accuracy of duration in the right parietal cortex, suggesting that individuals with a better timing performance represent duration information in a more distinctive manner. Our study demonstrates that although time representation is widely distributed across frontoparietal regions, neural populations i...
Behavioural Brain Research, 2010
From a temporal dynamic processing point of view, episodic memory can be divided into three critical time periods: short-term episodic memory with a duration of seconds, intermediate-term episodic memory with a duration from minutes to hours, and long-term or remote episodic memory with a duration from days to years. We propose that short-term episodic memory is mediated by the CA3 subregion of the hippocampus, intermediate-term episodic memory is mediated by the CA1 subregion of the hippocampus (in certain situations aided by the CA3 subregion), and that long-term or remote episodic memory may be mediated by the CA1 subregion. In support of the above mentioned proposal data are presented to support the short-term and intermediate episodic memory functions of CA3 and CA1 based on single item object, spatial location, and object-place association tasks. Additional data are presented for a role for CA3 in short-term episodic memory based on multiple sequential spatial locations, visual objects, and odors tasks. The same episodic memory model based on duration mentioned above cannot easily be applied to the functions of the CA3 (short-term episodic) and CA1 (intermediate-term episodic) for a multiple sequentially presented item, such as a places, objects or odors. The reason for this is that the CA1 region supports, in addition to intermediate episodic memory, temporal pattern separation processes which would reduce interference among sequentially experienced items. The consequence is that this temporal pattern separation process can result in CA1 involvement in short-term episodic tasks based on duration. Also, data are presented based on tasks that involved multiple-trials tested within a day and between days short-term and intermediate-term episodic memory. Furthermore, the mechanisms for understanding the interactions and dissociations between CA3 and CA1 are discussed. The DG appears to have a modulatory influence on the CA3 and CA1 mediation of short-term and intermediate-term episodic memory. The role of CA1 in supporting remote episodic memory requires more experimentation.
Neuron, 2012
Learning the timing of rapidly changing sensory events is crucial to construct a reliable representation of the environment and to efficiently control behavior. The neurophysiological mechanisms underlying the learning of time are unknown. We used functional and structural magnetic resonance imaging to investigate neurophysiological changes and individual brain differences underlying the learning of time in the millisecond range. We found that the representation of a trained visual temporal interval was associated with functional and structural changes in a sensory-motor network including occipital, parietal, and insular cortices, plus the cerebellum. We show that both types of neurophysiological changes correlated with changes of performance accuracy and that activity and gray-matter volume of sensorimotor cortices predicted individual learning abilities. These findings represent neurophysiological evidence of functional and structural plasticity associated with the learning of time in humans and highlight the role of sensory-motor circuits in the perceptual representation of time in the millisecond range.
2013
Episodic memory includes information about how long ago specific events occurred. Since most of our experiences have overlapping elements, remembering this temporal context is crucial for distinguishing individual episodes. The discovery of timing signals in hippocampal neurons, including evidence of "time cells" and of gradual changes in ensemble activity over long timescales, strongly suggests that the hippocampus is important for this capacity. However, behavioral evidence that the hippocampus is critical for the memory of elapsed time is lacking. This is possibly because previous studies have used time durations in the range of seconds when assessing hippocampal dependence, a timescale known to require corticostriatal circuits.
Biological Psychology, 2012
Even though it is known that sleep benefits declarative memory consolidation, the role of sleep in the storage of temporal sequences has rarely been examined. Thus we explored the influence of sleep on temporal order in an episodic memory task followed by sleep or sleep deprivation. Thirty-four healthy subjects (17 men) aged between 19 and 28 years participated in the randomized, counterbalanced, between-subject design. Parameters of interests were NREM/REM cycles, spindle activity and spindle-related EEG power spectra. Participants of both groups (sleep group/sleep deprivation group) performed retrieval in the evening, morning and three days after the learning night. Results revealed that performance in temporal order memory significantly deteriorated over three days only in sleep deprived participants. Furthermore our data showed a positive relationship between the ratios of the (i) first NREM/REM cycle with more REM being associated with delayed temporal order recall. Most interestingly, data additionally indicated that (ii) memory enhancers in the sleep group show more fast spindle related alpha power at frontal electrode sites possibly indicating access to a yet to be consolidated memory trace. We suggest that distinct sleep mechanisms subserve different aspects of episodic memory and are jointly involved in sleep-dependent memory consolidation.
An enduring puzzle in the neuroscience of memory is how the brain parsimoniously situates past events by their order in relation to time. By combining functional MRI, and representational similarity analysis, we reveal a multivoxel representation of time intervals separating pairs of episodic event-moments in the posterior medial memory system, especially when the events were experienced within a similar temporal context. We further show such multivoxel representations to be vulnerable to disruption through targeted repetitive transcranial magnetic stimulation and that perturbation to the mnemonic abstraction alters the neural—behavior relationship across the wider parietal memory network. Our findings establish a mnemonic “pattern-based” code of temporal distances in the human brain, a fundamental neural mechanism for supporting the temporal structure of past events, assigning the precuneus as a locus of flexibly effecting the manipulation of physical time during episodic memory re...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014
Making sense of previous experience requires remembering the order in which events unfolded in time. Prior work has implicated the hippocampus and medial temporal lobe cortex in memory for temporal information associated with individual episodes. However, the processes involved in encoding and retrieving temporal information across extended sequences is relatively poorly understood. Here we used fMRI during the encoding and retrieval of extended sequences to test specific predictions about the type of information used to resolve temporal order and the role of the hippocampus in this process. Participants studied sequences of images of celebrity faces and common objects followed by a recency discrimination test. The main conditions of interest were pairs of items that had been presented with three intervening items, half of which included an intervening category shift. During encoding, hippocampal pattern similarity across intervening items was associated with subsequent successful o...
Timing & Time Perception, 2014
The overlap of neural circuits involved in episodic memory, relational learning, trace conditioning, and interval timing suggests the importance of hippocampal-dependent processes. Identifying the functional and neural mechanisms whereby the hippocampus plays a role in timing and decision-making, however, has been elusive. In this article we describe recent neurobiological findings, including the discovery of hippocampal ‘time cells’, dependency of duration discriminations in the minutes range on hippocampal function, and the correlation of hippocampal theta rhythm with specific features of temporal processing. These results provide novel insights into the ways in which the hippocampus might interact with the striatum in order to support both retrospective and prospective timing. Suggestions are also provided for future research on the role of the hippocampus in memory for elapsed time.
Learning & Memory, 2012
We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after months. In contrast, BOLD activity in a retrieval-related set of brain areas during correctly remembered events was similar after hours and weeks but significantly declined after months. Despite this reduction, BOLD activity in retrieval-related regions was positively correlated with recognition accuracy only after months. Hippocampal engagement during retrieval remained similar over time during recall but decreased in recognition. Our results are in line with the hypothesis that hippocampus subserves retrieval of real-life episodic memory long after encoding, its engagement being dependent on retrieval demands. Furthermore, our findings sugges...
2000
The synchrony between the individual brain and its environment is maintained by a system of internal clocks that together reflect the temporal organization of the organism. Extending the theoretical work of Edelman and others, the temporal organization of the brain is posited as functioning through ''re-entry'' and ''temporal tagging'' and binds the wide range of possible times to a unified
Journal of Cognitive Neuroscience, 2008
Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional MRI (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices) and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of left vs. right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events.
While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.
Journal of Cognitive Neuroscience
The chronology of events in time–space is naturally available to the senses, and the spatial and temporal dimensions of events entangle in episodic memory when navigating the real world. The mapping of time–space during navigation in both animals and humans implicates the hippocampal formation. Yet, one arguably unique human trait is the capacity to imagine mental chronologies that have not been experienced but may involve real events—the foundation of causal reasoning. Herein, we asked whether the hippocampal formation is involved in mental navigation in time (and space), which requires internal manipulations of events in time and space from an egocentric perspective. To address this question, we reanalyzed a magnetoencephalography data set collected while participants self-projected in time or in space and ordered historical events as occurring before/after or west/east of the mental self [Gauthier, B., Pestke, K., & van Wassenhove, V. Building the arrow of time… Over time: A sequ...
When navigating the real-world, the spatiotemporal sequencing of events is intrinsically bound to one's physical trajectory; when recollecting the past or imagining the future, the temporal and spatial dimension of events can be independently manipulated. Yet, the rules enabling the flexible use of spatial and temporal cognitive maps likely differ in one major way as time is directional (oriented from past-to-future) whereas space is not. Using combined magneto- and electroencephalography, we sought to capture such differences by characterizing time-resolved brain activity while participants mentally ordered memories from different mental perspectives in time (past/future) or space (west/east). We report two major neural dissociations underlying the mental ordering of events in time and in space: first, brain responses evoked by the temporal order and the temporal distance of events-to-self dissociated at early and late latencies, respectively whereas spatial order and distance ...
Hippocampus, 2019
Our daily lives unfold continuously, yet when we reflect on the past, we remember those experiences as distinct and cohesive events. To understand this phenomenon, early investigations focused on how and when individuals perceive natural breakpoints, or boundaries, in ongoing experience. More recent research has examined how these boundaries modulate brain mechanisms that support long‐term episodic memory. This work has revealed that a complex interplay between hippocampus and prefrontal cortex promotes the integration and separation of sequential information to help organize our experiences into mnemonic events. Here, we discuss how both temporal stability and change in one's thoughts, goals, and surroundings may provide scaffolding for these neural processes to link and separate memories across time. When learning novel or familiar sequences of information, dynamic hippocampal processes may work both independently from and in concert with other brain regions to bind sequential...
Current Opinion in Behavioral Sciences, 2017
Everyday life consists of a continuous stream of information, yet somehow we remember the past as distinct episodic events. Prominent models posit that event segmentation is driven by erroneous predictions about how current experiences are unfolding. Yet this perspective fails to explain how memories become integrated or separated in the absence of prior knowledge. Here, we propose that contextual stability dictates the temporal organization of events in episodic memory. To support this view, we summarize new findings showing that neural measures of event organization index how ongoing changes in external contextual cues and internal representations of time influence different forms of episodic memory.
Behavioral Neuroscience, 2004
Sixteen participants viewed a videotaped tour of 4 houses that highlighted a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal-order information while undergoing functional magnetic resonance imaging. Preferential activation was observed in the right parahippocampal gyrus during the retrieval of spatial-location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in the right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial-location information.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.