Academia.eduAcademia.edu

Excape WP 1 . Conformal Predictors

2015

Abstract

The report summarises some preliminary findings of WP1.4: Confidence Estimation and feature significance. It presents an application of conformal predictors in transductive and inductive modes to the large, high-dimensional, sparse and imbalanced data sets found in Compound Activity Prediction from PubChem public repository. The report describes a version of conformal predictors called Mondrian Predictor that keeps validity guarantees for each class. The experiments were conducted using several non-conformity measures extracted from underlying algorithms such as SVM, Nearest Neighbours and Näıve Bayes. The results show (1) that Inductive Conformal Mondrian Prediction framework is quick and effective for large imbalanced data and (2) that its less strict i.i.d. requirements combine well with training set editing algorithms such as Cascade SVM. Among the algorithms tested with the Mondrian ICP framework, Cascade SVM with Tanimoto+RBF kernel appeared to be best performing one, if the q...