Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
This article proposes an original approach to the performance understanding of large dimensional neural networks. In this preliminary study, we study a single hidden layer feed-forward network with random input connections (also called extreme learning machine) which performs a simple regression task. By means of a new random matrix result, we prove that, as the size and cardinality of the input data and the number of neurons grow large, the network performance is asymptotically deterministic. This entails a better comprehension of the effects of the hyper-parameters (activation function, number of neurons, etc.) under this simple setting, thereby paving the path to the harnessing of more involved structures.
Extreme learning machines (ELMs) basically give answers to two fundamental learning problems: (1) Can fundamentals of learning (i.e., feature learning, clustering , regression and classification) be made without tuning hidden neurons (including biological neurons) even when the output shapes and function modeling of these neurons are unknown? (2) Does there exist unified framework for feedforward neural networks and feature space methods? ELMs that have built some tangible links between machine learning techniques and biological learning mechanisms have recently attracted increasing attention of researchers in widespread research areas. This paper provides an insight into ELMs in three aspects, viz: random neurons, random features and kernels. This paper also shows that in theory ELMs (with the same kernels) tend to outperform support vector machine and its variants in both regression and classification applications with much easier implementation.
Neural Computing and Applications
Our research is devoted to answering whether randomisation-based learning can be fully competitive with the classical feedforward neural networks trained using backpropagation algorithm for classification and regression tasks. We chose extreme learning as an example of randomisation-based networks. The models were evaluated in reference to training time and achieved efficiency. We conducted an extensive comparison of these two methods for various tasks in two scenarios: $$\bullet$$ ∙ using comparable network capacity and $$\bullet$$ ∙ using network architectures tuned for each model. The comparison was conducted on multiple datasets from public repositories and some artificial datasets created for this research. Overall, the experiments covered more than 50 datasets. Suitable statistical tests supported the results. They confirm that for relatively small datasets, extreme learning machines (ELM) are better than networks trained by the backpropagation algorithm. But for demanding ima...
International Journal of Computer Applications, 2016
In Artificial Intelligence classification is a process of identifying classes of a different entities on the basis information provided from the dataset. Extreme Learning Machine (ELM) is one of the efficient classifiers. ELM is formed by interconnected layers. Each layer has many nodes (neurons). The input layer communicates with hidden layer with random weight and produces output layer with the help of activation function (transfer function). Activation functions are non-linear functions and different activation functions may produce different output on same dataset. Not every activation function is suited for every type classification problem. This paper shows the variation of average test accuracy with various activation functions. Along with it also has been shown that how much performance varied due to selection of random bias parameter between input and hidden layer of ELM.
This paper introduces techniques for Deep Learning in conjunction with spiked random neural networks that closely resemble the stochastic behaviour of biological neurons in mammalian brains. The paper introduces clusters of such random neural networks and obtains the characteristics of their collective behaviour. Combining this model with previous work on extreme learning machines, we develop multilayer architectures which structure Deep Learning Architectures a a " front end " of one or two layers of random neural networks, followed by an extreme learning machine. The approach is evaluated on a standard – and large – visual character recognition database, showing that the proposed approach can attain and exceed the performance of techniques that were previously reported in the literature.
The Annals of Applied Probability
This article studies the Gram random matrix model G = 1 T Σ T Σ, Σ = σ(W X), classically found in the analysis of random feature maps and random neural networks, where X = [x1, . . . , xT ] ∈ R p×T is a (data) matrix of bounded norm, W ∈ R n×p is a matrix of independent zero-mean unit variance entries, and σ : R → R is a Lipschitz continuous (activation) function -σ(W X) being understood entrywise. By means of a key concentration of measure lemma arising from non-asymptotic random matrix arguments, we prove that, as n, p, T grow large at the same rate, the resolvent Q = (G + γIT ) -1 , for γ > 0, has a similar behavior as that met in sample covariance matrix models, involving notably the moment Φ = T n E[G], which provides in passing a deterministic equivalent for the empirical spectral measure of G. Application-wise, this result enables the estimation of the asymptotic performance of single-layer random neural networks. This in turn provides practical insights into the underlying mechanisms into play in random neural networks, entailing several unexpected consequences, as well as a fast practical means to tune the network hyperparameters. * Couillet's work is supported by the ANR Project RMT4GRAPH (ANR-14-CE28-0006).
2021
Machine learning applications employ FFNN (Feed Forward Neural Network) in their discipline enormously. But, it has been observed that the FFNN requisite speed is not up the mark. The fundamental causes of this problem are: 1) for training neural networks, slow gradient descent methods are broadly used and 2) for such methods, there is a need for iteratively tuning hidden layer parameters including biases and weights. To resolve these problems, a new emanant machine learning algorithm, which is a substitution of the feed-forward neural network, entitled as Extreme Learning Machine (ELM) introduced in this paper. ELM also come up with a general learning scheme for the immense diversity of different networks (SLFNs and multilayer networks). According to ELM originators, the learning capacity of networks trained using backpropagation is a thousand times slower than the networks trained using ELM, along with this, ELM models exhibit good generalization performance. ELM is more efficient...
This paper develops multi-layer classifiers and auto-encoders based on the Random Neural Network. Our motivation is to build robust classifiers that can be used in systems applications such as Cloud management for the accurate detection of states that can lead to failures. Using an idea concerning some to soma interactions between natural neuronal cells, we discuss a basic building block constructed of clusters of densely packet cells whose mathematical properties are based on G-Networks and the Random Neural Network. These mathematical properties lead to a transfer function that can be exploited for large arrays of cells. Based on this mathematical structure we build multi-layer networks. In order to evaluate the level of classification accuracy that can be achieved, we test these auto-encoders and classifiers on a widely used standard database of handwritten characters. Abstract. This paper develops multi-layer classifiers and auto-encoders based on the Random Neural Network. Our motivation is to build robust classifiers that can be used in systems applications such as Cloud management for the accurate detection of states that can lead to failures. Using an idea concerning some to soma interactions between natural neuronal cells, we discuss a basic building block constructed of clusters of densely packet cells whose mathematical properties are based on G-Networks and the Random Neural Network. These mathematical properties lead to a transfer function that can be exploited for large arrays of cells. Based on this mathematical structure we build multi-layer networks. In order to evaluate the level of classification accuracy that can be achieved, we test these auto-encoders and classifiers on a widely used standard database of handwritten characters. AQ1
FeedForward Neural Networks (FFNNs) have been successfully applied in many scientific areas such as computer science, engineering, biology, medicine and defense, among others. Their main advantages are (1) to approximate complex nonlinear mappings directly from the input samples; and (2) to provide models for a large class of natural and artificial phenomena that are difficult to handle using classical parametric techniques. Nevertheless, one of its most important drawbacks is that the traditional training procedures do not provide an efficient and fast implementation. This is due to the many parameters to be properly tuned by slow (often gradient based) algorithms, in order to obtain a good enough model. Furthermore, the training phase has to be repeated in order to perform model structure selection, for example the * Page (PS/TeX): 2 / 2, COMPOSITE 2 Pedro J. García-Laencina et al.
2015
Extreme learning machine is a new scheme for learning the feedforward neural network, where the input weights and biases determining the nonlinear feature mapping are initiated randomly and are not learned. In this work, we analyze approximation ability of the extreme learning machine depending on the activation function type and ranges from which input weights and biases are randomly generated. The studies are performed on the example of approximation of one variable function with varying complexity. The ranges of input weights and biases are determined for ensuring the sufficient flexibility of the set of activation functions to approximate the target function in the input interval.
Springer eBooks, 2017
The Random Neural Network (RNN) is a recurrent spiking neuronal model that has been used for learning and dynamic optimisation of large scale network systems. Here we use the RNN to construct dense block of spiking neuronal cells in conjunction with Deep Learning to mimic the stochastic behaviour of biological neurons in mammalian brains. Together with prior work on extreme learning machines (ELM), we construct multilayer architectures (MLA) that exploit dense clusters of RNNs for Deep Learning and evaluate their performance on large visual recognition datasets. The results obtained indicate that this approach can reach and exceed the levels of performance that have been previously reported. Finally, we develop an incremental learning algorithm to train such RNN-ELM multilayer architectures for purpose of handing big data.
2021
Machine learning applications employ FFNN (Feed Forward Neural Network) in their discipline enormously. But, it has been observed that the FFNN requisite speed is not up the mark. The fundamental causes of this problem are: 1) for training neural networks, slow gradient descent methods are broadly used and 2) for such methods, there is a need for iteratively tuning hidden layer parameters including biases and weights. To resolve these problems, a new emanant machine learning algorithm, which is a substitution of the feed-forward neural network, entitled as Extreme Learning Machine (ELM) introduced in this paper. ELM also come up with a general learning scheme for the immense diversity of different networks (SLFNs and multilayer networks). According to ELM originators, the learning capacity of networks trained using backpropagation is a thousand times slower than the networks trained using ELM, along with this, ELM models exhibit good generalization performance. ELM is more efficient...
2009
In order to provide a guideline about the number of hidden neurons N(h) and learning rate eta for large-scale neural networks from the viewpoint of stable learning, the authors try to formulate the boundary of stable learning roughly, and to adjust it to the actual learning results of random number mapping problems. It is confirmed in the simulation that the hidden-output connection weights become small as the number of hidden neurons becomes large, and also that the trade-off in the learning stability between input-hidden and hidden-output connections exists. Finally, two equations N(h) = radic(N(i) N(o)) and eta = 32 /radic(N(i)N(o)) are roughly introduced where N(i) and N(o) are the number of input and output neurons respectively even though further adjustment is necessary for other problems or conditions.
2018
This article provides a theoretical analysis of the asymptotic performance of a regression or classification task performed by a simple random neural network. This result is obtained by leveraging a new framework at the crossroads between random matrix theory and the concentration of measure theory. This approach is of utmost interest for neural network analysis at large in that it naturally dismisses the difficulty induced by the non-linear activation functions, so long that these are Lipschitz functions. As an application, we provide formulas for the limiting law of the random neural network output and compare them conclusively to those obtained practically on handwritten digits databases.
arXiv (Cornell University), 2022
We argue that many properties of fully-connected feedforward neural networks (FCNNs), also called multi-layer perceptrons (MLPs), are explainable from the analysis of a single pair of operations, namely a random projection into a higher-dimensional space than the input, followed by a sparsification operation. For convenience, we call this pair of successive operations expand-and-sparsify following the terminology of Dasgupta. We show how expand-andsparsify can explain the observed phenomena that have been discussed in the literature, such as the so-called Lottery Ticket Hypothesis, the surprisingly good performance of randomlyinitialized untrained neural networks, the efficacy of Dropout in training and most importantly, the mysterious generalization ability of overparameterized models, first highlighted by Zhang et al. and subsequently identified even in non-neural network models by Belkin et al.
Proceedings of the 16th International Conference on Engineering Applications of Neural Networks (INNS), 2015
Extreme learning machines (ELM) represent a new fast learning algorithm for single layer feedforward networks. In this paper, we investigate several practical properties of training ELM in the context of a simulated function approximation task. ELM with different hidden layer activation functions and varying number of hidden nodes are applied in the learning task and the function approximation accuracy is examined with respect to the range scaling of input variables. The results demonstrate that ELM models are very sensitive with respect to proper input scaling. The approximate range of optimal ELM performance covers only input range scaling within an order of magnitude. Comparison with classical feedforward neural networks with sigmoidal activation functions shows that these are not affected by input range scaling. Results encourage further studies of practical aspect of efficient training and applying ELM.
Neurocomputing, 2014
This paper proposes a learning framework for single-hidden layer feedforward neural networks (SLFN) called optimized extreme learning machine (O-ELM). In O-ELM, the structure and the parameters of the SLFN are determined using an optimization method. The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov's regularization in order to improve the SLFN performance in the presence of noisy data. The optimization method is used to select the set of input variables, the hidden-layer configuration and bias, the input weights and the Tikhonov's regularization factor. The proposed framework has been tested with three optimization methods (genetic algorithms, simulated annealing, and differential evolution) over sixteen benchmark problems available in public repositories.
Neural Network World, 2013
Extreme learning machine (ELM) is an emergent method for training single hidden layer feedforward neural networks (SLFNs) with extremely fast training speed, easy implementation and good generalization performance. This work presents effective ensemble procedures for combining ELMs by exploiting diversity. A large number of ELMs are initially trained in three different scenarios: the original feature input space, the obtained feature subset by forward selection and different random subsets of features. The best combination of ELMs is constructed according to an exact ranking of the trained models and the useless networks are discarded. The experimental results on several regression problems show that robust ensemble approaches that exploit diversity can effectively improve the performance compared with the standard ELM algorithm and other recent ELM extensions.
2018
Especially in the last decade, Artificial Intelligence (AI) has gained increasing popularity as the neural networks represent incredibly exciting and powerful machine learning-based techniques that can solve many real-time problems. The learning capability of such systems is directly related with the evaluation methods used. In this study, the effectiveness of the calculation parameters in a Single-Hidden Layer Feedforward Neural Networks (SLFNs) will be examined. We will present how important the selection of an activation function is in the learning stage. A lot of work is developed and presented for SLFNs up to now. Our study uses one of the most commonly known learning algorithms, which is Extreme Learning Machine (ELM). Main task of an activation function is to map the input value of a neural network to the output node with a high learning or achievement rate. However, determining the correct activation function is not as simple as thought. First we try to show the effect of the activation functions on different datasets and then we propose a method for selection process of it due to the characteristic of any dataset. The results show that this process is providing a remarkably better performance and learning rate in a sample neural network.
Neural Networks, 2013
Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages.
Neural Networks, 2012
Error minimized extreme learning machines Support vector sequential feed-forward neural networks Sequential approximations a b s t r a c t Recently, error minimized extreme learning machines (EM-ELMs) have been proposed as a simple and efficient approach to build single-hidden-layer feed-forward networks (SLFNs) sequentially. They add random hidden nodes one by one (or group by group) and update the output weights incrementally to minimize the sum-of-squares error in the training set. Other very similar methods that also construct SLFNs sequentially had been reported earlier with the main difference that their hidden-layer weights are a subset of the data instead of being random. These approaches are referred to as support vector sequential feed-forward neural networks (SV-SFNNs), and they are a particular case of the sequential approximation with optimal coefficients and interacting frequencies (SAOCIF) method. In this paper, it is firstly shown that EM-ELMs can also be cast as a particular case of SAOCIF. In particular, EM-ELMs can easily be extended to test some number of random candidates at each step and select the best of them, as SAOCIF does. Moreover, it is demonstrated that the cost of the computation of the optimal outputlayer weights in the originally proposed EM-ELMs can be improved if it is replaced by the one included in SAOCIF. Secondly, we present the results of an experimental study on 10 benchmark classification and 10 benchmark regression data sets, comparing EM-ELMs and SV-SFNNs, that was carried out under the same conditions for the two models. Although both models have the same (efficient) computational cost, a statistically significant improvement in generalization performance of SV-SFNNs vs. EM-ELMs was found in 12 out of the 20 benchmark problems.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.