Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
IEEE Access
…
72 pages
1 file
Over the last few years, interference has been a major hurdle for successfully implementing various end-user applications in the fifth-generation (5G) of wireless networks. During this era, several communication protocols and standards have been developed and used by the community. However, interference persists, keeping given quality of service (QoS) provision to end-users for different 5G applications. To mitigate the issues mentioned above, in this paper, we present an in-depth survey of state-of-the-art non-orthogonal multiple access (NOMA) variants having power and code domains as the backbone for interference mitigation, resource allocations, and QoS management in the 5G environment. These are future smart communication and supported by device-to-device (D2D), cooperative communication (CC), multiple-input and multiple-output (MIMO), and heterogeneous networks (HetNets). From the existing literature, it has been observed that NOMA can resolve most of the issues in the existing proposals to provide contention-based grant-free transmissions between different devices. The key differences between the orthogonal multiple access (OMA) and NOMA in 5G are also discussed in detail. Moreover, several open issues and research challenges of NOMA-based applications are analyzed. Finally, a comparative analysis of different existing proposals is also discussed to provide deep insights to the readers. INDEX TERMS NOMA, OMA, uplink, downlink, device-to-device, machine-to-machine. • We present a comprehensive review on the PD-NOMA and CD-NOMA to study the various challenges associated with them. The basic principle of NOMA and its standards, advantages, challenges, and solutions are studied.
Wiley 5G Ref, 2019
Due to massive connectivity and increasing demands of various services and datahungry applications, a full-scale implementation of the fifth generation (5G) wireless systems requires more effective radio access techniques. In this regard, non-orthogonal multiple access (NOMA) has recently gained ever-growing attention from both academia and industry. Compared to orthogonal multiple access (OMA) techniques, NOMA is superior in terms of spectral efficiency and is thus appropriate for 5G and Beyond. In this article, we provide an overview of NOMA principles and applications. Specifically, the article discusses the fundamentals of power-domain NOMA with single and multiple antennas in both uplink and downlink settings. In addition, the basic principles of code-domain NOMA are elaborated. Further, the article explains various resource allocation techniques such as user pairing and power allocation for NOMA systems; discusses the basic form of cooperative NOMA and its variants; and addresses several opportunities and challenges associated with the compatibility of NOMA with other advanced communication paradigms such as heterogeneous networks and millimeter wave communications.
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS,, 2022
Non-Orthogonal Multiple Access (NOMA) in the fifth generation (5G) system is one of the optimistic technologies for wireless radio access networks. Compared to orthogonal multiple accesses (OMA) reduce the spectral efficiency; NOMA provides the best solution by increasing the data rates. This study evaluates NOMA with a downlink in the automatic deployment of multiusers. The outage performance and ergotic sum-rate gain give the NOMA better performance can be concluded at the final results. NOMA provides the Quality of Service (QoS) to the multi-users by considering the power allocation and data rate factors. Here is considered the outage probability will be 1 when it identifies the different user and allocates the data rate and power.
In orthogonal multiple access schemes, efficiency of network is affected by using orthogonality phenomena. For example, in FDMA, the spectrum is divided into channels and each two channels are separated by guard bands, thus the guard band bandwidth is not utilized. In Non-Orthogonal Multiple Access (like Power Domain-NOMA), each user is provided different power levels while using same frequency, time or code. Thus, efficiency is increased. In this paper, we will analyze NOMA for future use with different implementation techniques. .
IEEE Access
Non-orthogonal multiple access (NOMA) is a better multiple access technique than orthogonal multiple access (OMA), precisely orthogonal frequency division multiple access (OFDMA) scheme, at the conceptual level for fifth-generation (5G) networks and beyond 5G (B5G) networks. We investigate the potentials of the schemes by comparing the proposed NOMA scheme with the traditional cooperative communication NOMA (CCNOMA) scheme, rather than the comparison between NOMA and OMA only. To probe the effectiveness of NOMA as a multiple access technique, we propose a novel NOMA scheme considering two adjacent BSs with a special design of the transceiver architecture. The proposed scheme provides a reasonable data rate to both near user (NU) and far user (FU) without compromising the quality of service (QoS) to anyone of them. The conclusive analyses on the optimization framework of multi-user sum rate, capacity, transmit power, spectral efficiency (SE), and energy efficiency (EE) trade-off for NOMA and OFDMA schemes have been established to a succession of derivations. Under the analytical optimization framework, we also prove quite a few properties for them. Simulation results confirm the theoretical findings and show that the two schemes can efficiently approach the optimal power allocation, minimization of power consumption, and optimal SE-EE trade-off, and the proposed NOMA scheme provides comparatively better data sum rates than the baseline OMA scheme.
IEEE Communications Surveys & Tutorials, 2017
Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for performance enhancement in next-generation cellular communications. Compared to orthogonal frequency division multiple access (OFDMA), which is a well-known high-capacity orthogonal multiple access (OMA) technique, NOMA offers a set of desirable benefits, including greater spectrum efficiency. There are different types of NOMA techniques, including power-domain and code-domain. This paper primarily focuses on power-domain NOMA that utilizes superposition coding (SC) at the transmitter and successive interference cancellation (SIC) at the receiver. Various researchers have demonstrated that NOMA can be used effectively to meet both network-level and user-experienced data rate requirements of fifth-generation (5G) technologies. From that perspective, this paper comprehensively surveys the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NOMA. In addition, this paper discusses how NOMA performs when it is integrated with various proven wireless communications techniques, such as cooperative communications, multiple-input multiple-output (MIMO), beamforming, space-time coding, and network coding, among others. Furthermore, this paper discusses several important issues on NOMA implementation and provides some avenues for future research.
T-Comm
Sixth generation 6G (Sixth Generation) wireless communication systems are the most popular direction of articles and literature. The main interest is the future standard of the 3GPP project, which defines the key technologies that will be used in the new generation of wireless communication systems. NOMA (Non-orthogonal multiple access) technology is one of the fundamental technologies for 6G systems. Using NOMA technology, it is possible to implement the concept of "Massive connectivity" for 6G systems, which assumes the provision of high capacity of future communication systems and more efficient use of the radio frequency spectrum. There are several schemes for organizing multiple NOMA access. The most promising of them are SCMA (Sparse Code Multiple Access) –and WSMA (Welch-bound equality Spread Multiple Access). The main goal of this article is to compare the performance of non-orthogonal SCMA and WSMA schemes.
2019
Non orthogonal multiple access or NOMA as it is known is one of the most promising multiple access techniques which is being developed for 5G networks. It has been shown through various research that NOMA provides better throughput and spectrum utilization than present existing techniques. NOMA can be classified broadly into two types power domain and code domain. This paper focuses on the implementation challenges that NOMA presents. Keywords—Code-Domain NOMA, Imperfect CSI, Powerdomain NOMA, Resource Allocation, SIC
IEEE Communications Surveys & Tutorials
The ambitious high data-rate applications in the envisioned future beyond fifth-generation (B5G) wireless networks require new solutions, including the advent of more advanced architectures than the ones already used in 5G networks, and the coalition of different communications schemes and technologies to enable these applications requirements. Among the candidate communications schemes for future wireless networks are nonorthogonal multiple access (NOMA) schemes that allow serving more than one user in the same resource block by multiplexing users in other domains than frequency or time. In this way, NOMA schemes tend to offer several advantages over orthogonal multiple access (OMA) schemes such as improved user fairness and spectral efficiency, higher cell-edge throughput, massive connectivity support, and low transmission latency. With these merits, NOMA-enabled transmission schemes are being increasingly looked at as promising multiple access schemes for future wireless networks. When the power domain is used to multiplex the users, it is referred to as the power domain NOMA (PD-NOMA). In this paper, we survey the integration of PD-NOMA with the enabling communications schemes and technologies that are expected to meet the various requirements of B5G networks. In particular, this paper surveys the different rate optimization scenarios studied in the literature when PD-NOMA is combined with one or more of the candidate schemes and technologies for B5G networks including multiple-input-single-output (MISO), multipleinput-multiple-output (MIMO), massive-MIMO (mMIMO), advanced antenna architectures, higher frequency millimeter-wave (mmWave) and terahertz (THz) communications, advanced coordinated multi-point (CoMP) transmission and reception schemes, cooperative communications, cognitive radio (CR), visible light communications (VLC), unmanned aerial vehicle (UAV) assisted communications and others. The considered system models, the optimization methods utilized to maximize the achievable rates, and the main lessons learnt on the optimization and the per
IEEE Communications Surveys and Tutorials, 2018
In the 5th generation (5G) of wireless communication systems, hitherto unprecedented requirements are expected to be satisfied. As one of the promising techniques of addressing these challenges, non-orthogonal multiple access (NOMA) has been actively investigated in recent years. In contrast to the family of conventional orthogonal multiple access (OMA) schemes, the key distinguishing feature of NOMA is to support a higher number of users than the number of orthogonal resource slots with the aid of non-orthogonal resource allocation. This may be realized by the sophisticated inter-user interference cancellation at the cost of an increased receiver complexity. In this article, we provide a comprehensive survey of the original birth, the most recent development, and the future research directions of NOMA. Specifically, the basic principle of NOMA will be introduced at first, with the comparison between NOMA and OMA especially from the perspective of information theory. Then, the prominent NOMA schemes are discussed by dividing them into two categories, namely, power-domain and code-domain NOMA. Their design principles and key features will be discussed in detail, and a systematic comparison of these NOMA schemes will be summarized in terms of their spectral efficiency, system performance, receiver complexity, etc. Finally, we will highlight a range of challenging open problems that should be solved for NOMA, along with corresponding opportunities and future research trends to address these challenges.
IEEE Journal on Selected Areas in Communications, 2017
Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the content of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
RESTECH 2016 (Research, Education, Science and Technology Colloqium 2016), Jabatan Kejuruteraan Awam, Politeknik Merlimau, Melaka, 2016
International Journal of Computer Applications, 2020
International Journal of Scientific Research in Science and Technology, 2023
International Journal of Integrated Engineering
IEEE open journal of the Communications Society, 2023
Emerging Technology Conference, 2019
International Journal of Electrical and Computer Engineering (IJECE), 2020
International Journal of Interdisciplinary Telecommunications and Networking, 2020
Transactions on Emerging Telecommunications Technologies, 2020
3D SCEEER Conference, 2020