Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2006, Lecture Notes in Computer Science
An important database primitive for commonly used feature databases is the similarity join. It combines two datasets based on some similarity predicate into one set such that the new set contains pairs of objects of the two original sets. In many different application areas, e.g. sensor databases, location based services or face recognition systems, distances between objects have to be computed based on vague and uncertain data. In this paper, we propose to express the similarity between two uncertain objects by probability density functions which assign a probability value to each possible distance value. By integrating these probabilistic distance functions directly into the join algorithms the full information provided by these functions is exploited. The resulting probabilistic similarity join assigns to each object pair a probability value indicating the likelihood that the object pair belongs to the result set. As the computation of these probability values is very expensive, we introduce an efficient join processing strategy exemplarily for the distance-range join. In a detailed experimental evaluation, we demonstrate the benefits of our probabilistic similarity join. The experiments show that we can achieve high quality join results with rather low computational cost. 2 Related Work In the past decade, a lot of work has been done in the field of similarity join processing. Recently some researchers have focused on the area of query processing of uncertain data. However, to the best of our knowledge no work has been done in the area of join processing of uncertain data. In the following, we present related work on both topics, similarity join processing and query processing of uncertain data.
Proceedings of the VLDB Endowment, 2010
Set similarity join has played an important role in many real-world applications such as data cleaning, near duplication detection, data integration, and so on. In these applications, set data often contain noises and are thus uncertain and imprecise. In this paper, we model such probabilistic set data on two uncertainty levels, that is, set and element levels. Based on them, we investigate the problem of probabilistic set similarity join (PS 2 J) over two probabilistic set databases, under the possible worlds semantics. To efficiently process the PS 2 J operator, we first reduce our problem by condensing the possible worlds, and then propose effective pruning techniques, including Jaccard distance pruning, probability upper bound pruning, and aggregate pruning, which can filter out false alarms of probabilistic set pairs, with the help of indexes and our designed synopses. We demonstrate through extensive experiments the PS 2 J processing performance on both real and synthetic data. J dist(r , s ) ≥ J dist(pivr i , s ) − J dist(r , pivr i ) ≥ J dist(pivr i , s ) − L(r , pivr i )
2007
Nearest-neighbor queries are an important query type for commonly used feature databases. In many different application areas, e.g. sensor databases, location based services or face recognition systems, distances between objects have to be computed based on vague and uncertain data. A successful approach is to express the distance between two uncertain objects by probability density functions which assign a probability value to each possible distance value. By integrating the complete probabilistic distance function as a whole directly into the query algorithm, the full information provided by these functions is exploited. The result of such a probabilistic query algorithm consists of tuples containing the result object and a probability value indicating the likelihood that the object satisfies the query predicate. In this paper we introduce an efficient strategy for processing probabilistic nearest-neighbor queries, as the computation of these probability values is very expensive. In a detailed experimental evaluation, we demonstrate the benefits of our probabilistic query approach. The experiments show that we can achieve high quality query results with rather low computational cost.
Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM '06, 2006
In many applications data values are inherently uncertain. This includes moving-objects, sensors and biological databases. There has been recent interest in the development of database management systems that can handle uncertain data. Some proposals for such systems include attribute values that are uncertain. In particular, an attribute value can be modeled as a range of possible values, associated with a probability density function. Previous efforts for this type of data have only addressed simple queries such as range and nearest-neighbor queries. Queries that join multiple relations have not been addressed in earlier work despite the significance of joins in databases. In this paper we address join queries over uncertain data. We propose a semantics for the join operation, define probabilistic operators over uncertain data, and propose join algorithms that provide efficient execution of probabilistic joins. The paper focuses on an important class of joins termed probabilistic threshold joins that avoid some of the semantic complexities of dealing with uncertain data. For this class of joins we develop three sets of optimization techniques: item-level, page-level, and index-level pruning. These techniques facilitate pruning with little space and time overhead, and are easily adapted to most join algorithms. We verify the performance of these techniques experimentally.
2011 IEEE 27th International Conference on Data Engineering, 2011
In this paper, we propose a novel, effective and efficient probabilistic pruning criterion for probabilistic similarity queries on uncertain data. Our approach supports a general uncertainty model using continuous probabilistic density functions to describe the (possibly correlated) uncertain attributes of objects. In a nutshell, the problem to be solved is to compute the PDF of the random variable denoted by the probabilistic domination count: Given an uncertain database object B, an uncertain reference object R and a set D of uncertain database objects in a multi-dimensional space, the probabilistic domination count denotes the number of uncertain objects in D that are closer to R than B. This domination count can be used to answer a wide range of probabilistic similarity queries. Specifically, we propose a novel geometric pruning filter and introduce an iterative filter-refinement strategy for conservatively and progressively estimating the probabilistic domination count in an efficient way while keeping correctness according to the possible world semantics. In an experimental evaluation, we show that our proposed technique allows to acquire tight probability bounds for the probabilistic domination count quickly, even for large uncertain databases.
Eighth International Conference on Database Systems for Advanced Applications, 2003. (DASFAA 2003). Proceedings., 2003
The efficient processing of similarity joins is important for a large class of applications. The dimensionality of the data for these applications ranges from low to high. Most existing methods have focussed on the execution of high-dimensional joins over large amounts of diskbased data. The increasing sizes of main memory available on current computers, and the need for efficient processing of spatial joins suggest that spatial joins for a large class of problems can be processed in main memory. In this paper we develop two new spatial join algorithms, the Grid-join and EGO*-join, and study their performance in comparison to the state of the art algorithm, EGO-join, and the RSJ algorithm. Through evaluation we explore the domain of applicability of each algorithm and provide recommendations for the choice of join algorithm depending upon the dimensionality of the data as well as the critical ε parameter. We also point out the significance of the choice of this parameter for ensuring that the selectivity achieved is reasonable. The proposed EGO*-join algorithm always, often significantly, outperforms the EGO-join. For low-dimensional data the Grid-join outperform both the EGO-and EGO*-joins. An analysis of the cost of the Grid-join is presented and highly accurate cost estimator functions are developed. These are used to choose an appropriate grid size for optimal performance and can also be used by a query optimizer to compute the estimated cost of the Grid-join.
Proceedings of the VLDB Endowment, 2011
Given a query object q , a reverse nearest neighbor (RNN) query in a common certain database returns the objects having q as their nearest neighbor. A new challenge for databases is dealing with uncertain objects. In this paper we consider probabilistic reverse nearest neighbor (PRNN) queries, which return the uncertain objects having the query object as nearest neighbor with a sufficiently high probability. We propose an algorithm for efficiently answering PRNN queries using new pruning mechanisms taking distance dependencies into account. We compare our algorithm to state-of-the-art approaches recently proposed. Our experimental evaluation shows that our approach is able to significantly outperform previous approaches. In addition, we show how our approach can easily be extended to PR k NN (where k > 1) query processing for which there is currently no efficient solution.
Information Systems, 2007
The efficient processing of multidimensional similarity joins is important for a large class of applications. The dimensionality of the data for these applications ranges from low to high. Most existing methods have focused on the execution of high-dimensional joins over large amounts of disk-based data. The increasing sizes of main memory available on current computers, and the need for efficient processing of spatial joins suggest that spatial joins for a large class of problems can be processed in main memory. In this paper, we develop two new in-memory spatial join algorithms, the Grid-join and EGO*-join, and study their performance. Through evaluation, we explore the domain of applicability of each approach and provide recommendations for the choice of a join algorithm depending upon the dimensionality of the data as well as the expected selectivity of the join. We show that the two new proposed join techniques substantially outperform the state-of-the-art join algorithm, the EGO-join.
arXiv preprint arXiv:1211.0176, 2012
Abstract: In this paper we introduce and experimentally compare alternative algorithms to join uncertain relations. Different algorithms are based on specific principles, eg, sorting, indexing, or building intermediate relational tables to apply traditional approaches. As a consequence their performance is affected by different features of the input data, and each algorithm is shown to be more efficient than the others in specific cases. In this way statistics explicitly representing the amount and kind of uncertainty in the input uncertain relations ...
Methodology and Computing in Applied Probability, 2010
In many database applications in telecommunication, environmental and health sciences, bioinformatics, physics, and econometrics, real-world data are uncertain and subjected to errors. These data are processed, transmitted and stored in large databases. We consider stochastic modelling for databases with uncertain data and for some basic database operations (for example, join, selection) with exact and approximate matching. Approximate join is used for merging or data deduplication in large databases. Distribution and mean of the join sizes are studied for random databases. A random database is treated as a table with independent random records with a common distribution (or a set of random tables). These results can be used for integration of information from different databases, multiple join optimization, and various probabilistic algorithms for structured random data.
Proceedings of the 2014 ACM SIGMOD international conference on Management of data - SIGMOD '14, 2014
A string similarity join finds all similar string pairs between two input string collections. It is an essential operation in many applications, such as data integration and cleaning, and has been extensively studied for deterministic strings.
2018 IEEE 34th International Conference on Data Engineering (ICDE), 2018
Set similarity join is a fundamental and wellstudied database operator. It is usually studied in the exact setting where the goal is to compute all pairs of sets that exceed a given similarity threshold (measured e.g. as Jaccard similarity). But set similarity join is often used in settings where 100% recall may not be importantindeed, where the exact set similarity join is itself only an approximation of the desired result set. We present a new randomized algorithm for set similarity join that can achieve any desired recall up to 100%, and show theoretically and empirically that it significantly improves on existing methods. The present state-of-the-art exact methods are based on prefix-filtering, the performance of which depends on the data set having many rare tokens. Our method is robust against the absence of such structure in the data. At 90% recall our algorithm is often more than an order of magnitude faster than state-of-the-art exact methods, depending on how well a data set lends itself to prefix filtering. Our experiments on benchmark data sets also show that the method is several times faster than comparable approximate methods. Our algorithm makes use of recent theoretical advances in highdimensional sketching and indexing that we believe to be of wider relevance to the data engineering community.
2009
In uncertain and probabilistic databases, confidence values (or probabilities) are associated with each data item. Confidence values are assigned to query results based on combining confidences from the input data. Users may wish to apply a threshold on result confidence values, ask for the "top-k" results by confidence, or obtain results sorted by confidence. Efficient algorithms for these types of queries can be devised by exploiting properties of the input data and the combining functions for result confidences. Previous algorithms for these problems assumed sufficient memory was available for processing. In this paper, we address the problem of processing all three types of queries when sufficient memory is not available, minimizing retrieval cost. We present algorithms, theoretical guarantees, and experimental evaluation.
2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), 2010
Similarity joins have been studied as key operations in multiple application domains, e.g., record linkage, data cleaning, multimedia and video applications, and phenomena detection on sensor networks. Multiple similarity join algorithms and implementation techniques have been proposed. They range from out-of-database approaches for only in-memory and external memory data to techniques that make use of standard database operators to answer similarity joins. Unfortunately, there has not been much study on the role and implementation of similarity joins as database physical operators. In this paper, we focus on the study of similarity joins as first-class database operators. We present the definition of several similarity join operators and study the way they interact among themselves, with other standard database operators, and with other previously proposed similarity-aware operators. In particular, we present multiple transformation rules that enable similarity query optimization through the generation of equivalent similarity query execution plans. We then describe an efficient implementation of two similarity join operators, Ɛ-Join and Join-Around, as core DBMS operators. The performance evaluation of the implemented operators in PostgreSQL shows that they have good execution time and scalability properties. The execution time of Join-Around is less than 5% of the one of the equivalent query that uses only regular operators while Ɛ-Join's execution time is 20 to 90% of the one of its equivalent regular operators based query for the useful case of small Ɛ (0.01% to 10% of the domain range). We also show experimentally that the proposed transformation rules can generate plans with execution times that are only 10% to 70% of the ones of the initial query plans.
… Journal on Very Large Data Bases, 2009
IEEE Transactions on Knowledge and Data Engineering, 2000
The importance of query processing over uncertain data has recently arisen due to its wide usage in many real-world applications. In the context of uncertain databases, previous works have studied many query types such as nearest neighbor query, range query, top-k query, skyline query, and similarity join. In this paper, we focus on another important query, namely, probabilistic group nearest neighbor (PGNN) query, in the uncertain database, which also has many applications. Specifically, given a set, Q, of query points, a PGNN query retrieves data objects that minimize the aggregate distance (e.g., sum, min, and max) to query set Q. Due to the inherent uncertainty of data objects, previous techniques to answer group nearest neighbor (GNN) query cannot be directly applied to our PGNN problem. Motivated by this, we propose effective pruning methods, namely, spatial pruning and probabilistic pruning, to reduce the PGNN search space, which can be seamlessly integrated into our PGNN query procedure. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approach, in terms of the wall clock time and the speed-up ratio against linear scan.
VLDB JOURNAL, 2009
Reverse nearest neighbor (RNN) search is very crucial in many real applications. In particular, given a database and a query object, an RNN query retrieves all the data objects in the database that have the query object as their nearest neighbors. Often, due to limitation of measurement devices, environmental disturbance, or characteristics of applications (for example, monitoring moving objects), data obtained from the real world are uncertain (imprecise). Therefore, previous approaches proposed for answering an RNN query over exact (precise) database cannot be directly applied to the uncertain scenario. In this paper, we re-define the RNN query in the context of uncertain databases, namely probabilistic reverse nearest neighbor (PRNN) query, which obtains data objects with probabilities of being RNNs greater than or equal to a user-specified threshold. Since the retrieval of a PRNN query requires accessing all the objects in the database, which is quite costly, we also propose an effective pruning method, called geometric pruning (GP), that significantly reduces the PRNN search space yet without introducing any false dismissals. Furthermore, we present an efficient PRNN query procedure that seamlessly integrates our pruning method. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed GP-based PRNN query processing approach, under various experimental settings.
Proceedings of The Vldb Endowment, 2008
Uncertainty pervades many domains in our lives. Current real-life applications, e.g., location tracking using GPS devices or cell phones, multimedia feature extraction, and sensor data management, deal with different kinds of uncertainty. Finding the nearest neighbor objects to a given query point is an important query type in these applications.
IEEE Transactions on Knowledge and Data Engineering, 2000
ÐCurrent data repositories include a variety of data types, including audio, images, and time series. State-of-the-art techniques for indexing such data and doing query processing rely on a transformation of data elements into points in a multidimensional feature space. Indexing and query processing then take place in the feature space. In this paper, we study algorithms for finding relationships among points in multidimensional feature spaces, specifically algorithms for multidimensional joins. Like joins of conventional relations, correlations between multidimensional feature spaces can offer valuable information about the data sets involved. We present several algorithmic paradigms for solving the multidimensional join problem and we discuss their features and limitations. We propose a generalization of the Size Separation Spatial Join algorithm, named Multidimensional Spatial Join (MSJ), to solve the multidimensional join problem. We evaluate MSJ along with several other specific algorithms, comparing their performance for various dimensionalities on both real and synthetic multidimensional data sets. Our experimental results indicate that MSJ, which is based on space filling curves, consistently yields good performance across a wide range of dimensionalities. Index TermsÐSpatial join, sort merge joins, multiple-key indexes, data structures.
World Wide Web, 2013
The top-k similarity joins have been extensively studied and used in a wide spectrum of applications such as information retrieval, decision making, spatial data analysis and data mining. Given two sets of objects U and V, a top-k similarity join returns k pairs of most similar objects from U × V. In the conventional model of top-k similarity join processing, an object is usually regarded as a point in a multidimensional space and the similarity is measured by some simple distance metrics like Euclidean distance. However, in many applications an object may be described by multiple values (instances) and the conventional model is not applicable since it does not address the distributions of object instances. In this paper, we study top-k similarity join over multi-valued objects. We apply two types of quantile based distance measures, φ-quantile distance and φ-quantile group-base distance, to explore the relative instance distribution among the multiple instances of objects. Efficient and effective techniques to process top-k similarity joins over multi-valued objects Wenjie Zhang was partially supported by ARC DE120102144 and DP120104168.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.