Academia.eduAcademia.edu

3 The asymptotic value in finite stochastic games

2012

Abstract

We provide a direct, elementary proof for the existence of lim λ→0 v λ , where v λ is the value of λ-discounted finite two-person zero-sum stochastic game. 1 Introduction Two-person zero-sum stochastic games were introduced by Shapley [4]. They are described by a 5-tuple (Ω, I, J , q, g), where Ω is a finite set of states, I and J are finite sets of actions, g : Ω × I × J → [0, 1] is the payoff, q : Ω × I × J → ∆(Ω) the transition and, for any finite set X, ∆(X) denotes the set of probability distributions over X. The functions g and q are bilinearly extended to Ω × ∆(I) × ∆(J). The stochastic game with initial state ω ∈ Ω and discount factor λ ∈ (0, 1] is denoted by Γ λ (ω) and is played as follows: at stage m ≥ 1, knowing the current state ω m , the players choose actions (i m , j m) ∈ I × J ; their choice produces a stage payoff g(ω m , i m , j m) and influences the transition: a new state ω m+1 is chosen according to the probability distribution q(•|ω m , i m , j m). At the end of the game, player 1 receives m≥1 λ(1 − λ) m−1 g(ω m , i m , j m) from player 2. The game Γ λ (ω) has a value v λ (ω), and v λ = (v λ (ω)) ω∈Ω is the unique fixed point of the so-called Shapley operator [4], i.e. v λ = Φ(λ, v λ), where for all f ∈ R Ω :