Academia.eduAcademia.edu

Deconfined quantum critical points -I

2004, Science

Abstract

The theory of second order phase transitions is one of the foundations of modern statistical mechanics and condensed matter theory. A central concept is the observable `order parameter', whose non-zero average value characterizes one or more phases and usually breaks a symmetry of the Hamiltonian. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics near such phase transitions. In this paper we show that near second order quantum phase transitions, subtle quantum interference effects can invalidate this paradigm. We present a theory of quantum critical points in a variety of experimentally relevant two-dimensional antiferromagnets. The critical points separate phases characterized by conventional `confining' order parameters. Nevertheless, the critical theory contains a new emergent gauge field, and `deconfined' degrees of freedom associated with fractionalization of the order parameters. We suggest that this new paradigm for quantum criticality may be the key to resolving a number of experimental puzzles in correlated electron systems.