Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009
The theory of multidimensional persistence captures the topology of a multifiltration-a multiparameter family of increasing spaces. Multifiltrations arise naturally in the topological analysis of scientific data. In this paper, we give a polynomial time algorithm for computing multidimensional persistence.
Discrete & Computational Geometry, 2009
Persistent homology captures the topology of a filtration-a oneparameter family of increasing spaces-in terms of a complete discrete invariant. This invariant is a multiset of intervals that denote the lifetimes of the topological entities within the filtration. In many applications of topology, we need to study a multifiltration: a family of spaces parameterized along multiple geometric dimensions. In this paper, we show that no similar complete discrete invariant exists for multidimensional persistence. Instead, we propose the rank invariant, a discrete invariant for the robust estimation of Betti numbers in a multifiltration, and prove its completeness in one dimension.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013
The computation of multidimensional persistent Betti numbers for a sublevel filtration on a suitable topological space equipped with a R n -valued continuous filtering function can be reduced to the problem of computing persistent Betti numbers for a parameterized family of one-dimensional filtering functions. A notion of continuity for points in persistence diagrams exists over this parameter space excluding a discrete number of so-called singular parameter values. We have identified instances of nontrivial monodromy over loops in nonsingular parameter space. In other words, following cornerpoints of the persistence diagrams along nontrivial loops can result in them switching places. This has an important incidence, e.g., in computer-assisted shape recognition, as we believe that new, improved distances between shape signatures can be defined by considering continuous families of matchings between cornerpoints along paths in nonsingular parameter space. Considering that nonhomotopic paths may yield different matchings will therefore be necessary. In this contribution we will discuss theoretical properties of the monodromy in question and give an example of a filtration in which it can be shown to be nontrivial.
2011
Topological Persistence has proven to be a promising framework for dealing with problems concerning shape analysis and comparison. In this contexts, it was originally introduced by taking into account 1-dimensional properties of shapes, modeled by real-valued functions. More recently, Topological Persistence has been generalized to consider multidimensional properties of shapes, coded by vector-valued functions.
Journal of Applied and Computational Topology
Topological data analysis is the study of data using techniques from algebraic topology. Often, one begins with a finite set of points representing data and a ''filter'' function which assigns a real number to each datum. Using both the data and the filter function, one can construct a filtered complex for further analysis. For example, applying the homology functor to the filtered complex produces an algebraic object known as a ''one-dimensional persistence module'', which can often be interpreted as a finite set of intervals representing various geometric features in the data. If one runs the above process incorporating multiple filter functions simultaneously, one instead obtains a multidimensional persistence module. Unfortunately, these are much more difficult to interpret. In this article, we analyze the space of multidimensional persistence modules from the perspective of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence instead of one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Finally, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data. This paper extends the results of Adcock et al. (Homol Homotopy Appl 18(1), 381-402, 2016) by constructing numeric invariants from the computation of a multidimensional persistence module as given by Carlsson et al.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013
Multidimensional persistent modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. Furthermore, it is presented a method to visualize topological features of a shape via persistence spaces. Finally, it is shown that this method is resistant to perturbations of the input data.
Algorithms
Stability of persistence diagrams under slight perturbations is a key characteristic behind the validity and growing popularity of topological data analysis in exploring real-world data. Central to this stability is the use of Bottleneck distance which entails matching points between diagrams. Instances of use of this metric in practical studies have, however, been few and sparingly far between because of the computational obstruction, especially in dimension zero where the computational cost explodes with the growth of data size. We present a novel efficient algorithm to compute dimension zero bottleneck distance between two persistent diagrams of a specific kind which runs significantly faster and provides significantly sharper approximates with respect to the output of the original algorithm than any other available algorithm. We bypass the overwhelming matching problem in previous implementations of the bottleneck distance, and prove that the zero dimensional bottleneck distance...
The intrinsic connection between lattice theory and topology is fairly well established, For instance, the collection of open subsets of a topological subspace always forms a distributive lattice. Persistent homology has been one of the most prominent areas of research in computational topology in the past 20 years. In this paper we will introduce an alternative interpretation of persistence based on the study of the order structure of its correspondent lattice. Its algorithmic construction leads to two operations on homology groups which describe a diagram of spaces as a complete Heyting algebra, which is a generalization of a Boolean algebra. We investigate some of the properties of this lattice, the algorithmic implications of it, and some possible applications.
Proceedings of the twenty-first annual symposium on Computational geometry, 2005
The persistence diagram of a real-valued function on a topological space is a multiset of points in the extended plane. We prove that under mild assumptions on the function, the persistence diagram is stable: small changes in the function imply only small changes in the diagram. We apply this result to estimating the homology of sets in a metric space and to comparing and classifying geometric shapes.
The theory of zigzag persistence is a substantial extension of persistent homology, and its development has enabled the investigation of several unexplored avenues in the area of topological data analysis. In this paper, we discuss three applications of zigzag persistence: topological bootstrapping, parameter thresholding, and the comparison of witness complexes.
Annals of the University of Craiova - Mathematics and Computer Science Series, 2003
Using membrane computing formalism introduced by Gh. Paun [GhP98], and following results from [GiOl01] we propose an algebraic-topological point of view of membrane computing applied to multidimensional data management. The computational mechanism is based on q-analysis [Ke86] and [Ai71]. 2000 Mathematics Subject Classification. 74K15, 68Q85.
ArXiv, 2015
An algorithm is presented that constructs an acyclic partial matching on the cells of a given simplicial complex from a vector-valued function defined on the vertices and extended to each simplex by taking the least common upper bound of the values on its vertices. The resulting acyclic partial matching may be used to construct a reduced filtered c omplex with the same multidimensional persistent homology as the original simplicial complex filtered by the sublevel sets of the function. Numeri cal tests show that in practical cases the rate of reduction in the number of cells achieved by the algorithm is substantial. This promises to be useful for the computation of multidimensional persistent homology of simplicial complexes filtered by sublevel sets of vector-valued functions.
2012
The extraction of significant structures in arbitrary high-dimensional data sets is a challenging task. Moreover, classifying data points as noise in order to reduce a data set bears special relevance for many application domains. Standard methods such as clustering serve to reduce problem complexity by providing the user with classes of similar entities. However, they usually do not highlight relations between different entities and require a stopping criterion, e.g. the number of clusters to be detected. In this paper, we present a visualization pipeline based on recent advancements in algebraic topology. More precisely, we employ methods from persistent homology that enable topological data analysis on high-dimensional data sets. Our pipeline inherently copes with noisy data and data sets of arbitrary dimensions. It extracts central structures of a data set in a hierarchical manner by using a persistence-based filtering algorithm that is theoretically well-founded. We furthermore introduce persistence rings, a novel visualization technique for a class of topological features-the persistence intervals-of large data sets. Persistence rings provide a unique topological signature of a data set, which helps in recognizing similarities. In addition, we provide interactive visualization techniques that assist the user in evaluating the parameter space of our method in order to extract relevant structures. We describe and evaluate our analysis pipeline by means of two very distinct classes of data sets: First, a class of synthetic data sets containing topological objects is employed to highlight the interaction capabilities of our method. Second, in order to affirm the utility of our technique, we analyse a class of high-dimensional real-world data sets arising from current research in cultural heritage.
ArXiv, 2021
In Topological Data Analysis, a common way of quantifying the shape of data is to use a persistence diagram (PD). PDs are multisets of points in R computed using tools of algebraic topology. However, this multi-set structure limits the utility of PDs in applications. Therefore, in recent years efforts have been directed towards extracting informative and efficient summaries from PDs to broaden the scope of their use for machine learning tasks. We propose a computationally efficient framework to convert a PD into a vector in R, called a vectorized persistence block (VPB). We show that our representation possesses many of the desired properties of vector-based summaries such as stability with respect to input noise, low computational cost and flexibility. Through simulation studies, we demonstrate the effectiveness of VPBs in terms of performance and computational cost within various learning tasks, namely clustering, classification and change point detection.
Journal of Mathematical Imaging and Vision, 2018
Given a simplicial complex and a vector-valued function on its vertices, we present an algorithmic construction of an acyclic partial matching on the cells of the complex compatible with the given function. This implies the construction can be used to build a reduced filtered complex with the same multidimensional persistent homology as of the original one filtered by the sublevel sets of the function. The correctness of the algorithm is proved, and its complexity is analyzed. A combinatorial interpretation of our algorithm based on the concept of a multidimensional discrete Morse function is introduced for the first time in this paper. Numerical experiments show a substantial rate of reduction in the number of cells achieved by the algorithm.
Foundations of Computational Mathematics, 2016
In this paper we study multidimensional persistence modules via what we call tame functors and noise systems. A noise system leads to a pseudo-metric topology on the category of tame functors. We show how this pseudo-metric can be used to identify persistent features of compact multidimensional persistence modules. To count such features we introduce the feature counting invariant and prove that assigning this invariant to compact tame functors is a 1-Lipschitz operation. For 1-dimensional persistence, we explain how, by choosing an appropriate noise system, the feature counting invariant identifies the same persistent features as the classical barcode construction.
ArXiv, 2019
Persistence has proved to be a valuable tool to analyze real world data robustly. Several approaches to persistence have been attempted over time, some topological in flavor, based on the vector space-valued homology functor, other combinatorial, based on arbitrary set-valued functors. To unify the study of topological and combinatorial persistence in a common categorical framework, we give axioms for a generalized rank function on objects in a target category, so that functors to that category induce persistence functions. We port the interleaving and bottleneck distances to this novel framework and generalize classical equalities and inequalities. Unlike sets and vector spaces, in many categories the rank of an object does not identify it up to isomorphism: to preserve information about the structure of persistence modules, we define colorable ranks, persistence diagrams and prove the equality between multicolored bottleneck distance and interleaving distance in semisimple Abelian...
2017
Given a simplicial complex and a vector-valued function on its vertices, we present an algorithmic construction of an acyclic partial matching on the cells of the complex. This construction is used to build a reduced filtered complex with the same multidimensional persistent homology as of the original one filtered by the sublevel sets of the function. A number of numerical experiments show a substantial rate of reduction in the number of cells achieved by the algorithm.
Arxiv preprint arXiv: …, 2009
Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that multidimensional rank invariants are stable with respect to function perturbations. More precisely, we construct a distance between rank invariants such that small changes of the function imply only small changes of the rank invariant. This result can be obtained by assuming the function to be just continuous. Multidimensional stability opens the way to a stable shape comparison methodology based on multidimensional persistence.
2021
Persistence landscapes are functional summaries of persistence diagrams designed to enable analysis of the diagrams using tools from functional data analysis. They comprise a collection of scalar functions such that birth and death times of topological features in persistence diagrams map to extrema of functions and intervals where they are non-zero. As a consequence, topological information is encoded in both amplitude and phase components of persistence landscapes. Through functional data analysis of persistence landscapes under an elastic Riemannian metric, we show how meaningful statistical summaries of persistence landscapes (e.g., mean, dominant directions of variation) can be obtained by decoupling topological signal present in amplitude and phase variations. The estimated phase functions are tied to the resolution parameter that determines the filtration of simplicial complexes used to construct persistence diagrams. For a dataset obtained under scale and sampling variabilit...
2019
Nowadays, data generation, representation and analysis occupy central roles in human society. Therefore, it is necessary to develop frameworks of analysis able of adapting to diverse data structures with minimal effort, much as guaranteeing robustness and stability. While topological persistence allows to swiftly study simplicial complexes paired with continuous functions, we propose a new theory of persistence that is easily generalizable to categories other than topological spaces and functors other than homology. Thus, in this framework, it is possible to study complex objects such as networks and quivers without the need of auxiliary topological constructions. We define persistence functions by directly considering relevant features (even discrete) of the objects of the category of interest, while maintaining the properties of topological persistence and persistent homology that are essential for a robust, stable and agile data analysis.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.