Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2017
AI
Adipose-derived stem cells (ASCs) present significant potential in regenerative medicine, particularly for the urinary tract. This paper discusses the characteristics of ASCs, their ability to differentiate into necessary cell types for urinary organ repair, and their role in enhancing tissue regeneration. The review also addresses current challenges in utilizing ASCs for therapeutic applications, highlighting the need for further research to maximize their effectiveness in clinical settings.
Cells and Biomaterials in Regenerative Medicine, 2014
The Malaysian journal of medical sciences : MJMS, 2013
Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells. In this study, adipose tissue samples were digested with 0.075% collagenase, and the resulting ADSCs were cultured and expanded in vitro. ADSCs at passage two were differentiated by incubation in smooth muscle inductive media (SMIM) consisting of MCDB I31 medium, 1% FBS, and 100 U/mL heparin for three and six weeks. ADSCs in non-inductive media were used as controls. Characterisation was performed by cell morphology and gene and protein expression. The differentiated cells became elongated and spindle shaped, and towards the end of six weeks, sporadic cell aggregation appeared that is typical of smooth muscle cell culture. Smooth muscle markers (i.e. alpha smooth muscle actin (ASMA), calponin, and myo...
Central European Journal of Urology, 2012
Journal of Stem Cell Research & Therapy, 2014
Tissue regeneration is the focal point of intensive research efforts that are supported by the increasing number of stem cell sources available. In particular, multipotent mesenchymal stem cells feature many functional properties attractive for regenerative medicine strategies, including their paracrine activity. Adipose-Derived Stromal/Stem Cells for tissue engineering-oriented applications. The lower genitourinary tract is subjected to many pathologic conditions necessitating repair and treatment. Stem cells freshly extracted from adipose tissue (SVF) or their expanded ASCs counterparts are quite widely studied because they are easily harvested in abundant amounts, making them an in vivo animal models recapitulating various dysfunctions of the genitourinary system. The aim of this review is to discuss the current status and potential of ASCs for repair and treatment of lower genitourinary tract conditions. Work pertaining to bladder replacement and voiding dysfunction, urinary incontinence, erectile dysfunction and tunica albuginea reconstruction will be discussed. In addition, recent studies concerning urethral tissue engineering and regeneration will be described.
International Journal of Molecular Sciences, 2021
Long urethral strictures are often treated with autologous genital skin and buccal mucosa grafts; however, risk of hair ingrowth and donor site morbidity, restrict their application. To overcome this, we introduced a tissue-engineered human urethra comprising adipose-derived stem cell (ASC)-based self-assembled scaffold, human urothelial cells (UCs) and smooth muscle cells (SMCs). ASCs were cultured with ascorbic acid to stimulate extracellular matrix (ECM) production. The scaffold (ECM) was stained with collagen type-I antibody and the thickness was measured under a confocal microscope. Results showed that the thickest scaffold (28.06 ± 0.59 μm) was achieved with 3 × 104 cells/cm2 seeding density, 100 μg/mL ascorbic acid concentration under hypoxic and dynamic culture condition. The biocompatibility assessment showed that UCs and SMCs seeded on the scaffold could proliferate and maintain the expression of their markers (CK7, CK20, UPIa, and UPII) and (α-SMA, MHC and Smootheline), r...
Biomedicines
Background: To evaluate tissue regeneration of the urinary bladder after the implantation of a decellularized vein sown with autologous adipose-derived mesenchymal stem cells (ASC) on luminal surfaces. Methods: New Zealand rabbits (n = 10) were distributed in two groups: Group Bioscaffold alone (G1)-decellularized vena cava (1 cm2) was implanted, and Group Bioscaffold plus ACSs (G2)-decellularized vena cava (1 cm2) containing ASCs were implanted. ASCs were expanded, characterized, and maintained for one week in culture with a decellularized vein scaffold. The implants were performed under general anesthesia using a continuous suture pattern. Afterward, 21 d (day) specimens were collected and analyzed by hematoxylin and eosin (HE) histology and scanning electron microscopy (SEM). Results: The integrity of the urinary bladder was maintained in both groups. A superior regenerative process was observed in the G2 group, compared to the G1 group. We observed a greater urothelial epithelia...
Tissue Engineering and Regenerative Medicine, 2019
BACKGROUND: To investigate whether human adipose-derived stem cells (hADSCs) seeded on multilayered poly (Llactide-co-e-caprolactone) (PLCL) sheets improve bladder function in a rat model of detrusor smooth muscle-removed bladder. METHODS: Male rats were randomly divided into 4 groups: Normal, injury (detrusor smooth muscle-removed bladder), PLCL (detrusor smooth muscle-removed bladder implanted with PLCL sheets), and PLCL ? ADSC (detrusor smooth muscle-removed bladder implanted with PLCL sheets seeded with hADSCs). Four weeks after the treatment, physiological, histological, immunohistochemical, and immunoblot analyses were performed. RESULTS: hADSCs were compatible with PLCL sheets. Further, the physiological study of PLCL ? ADSC group showed significant improvement in compliance and contractility suggesting the functional improvement of the bladder. Histological, immunohistochemical and immunoblot analyses revealed the uniform distribution of hADSCs in between PLCL sheets as well as differentiation of hADSCs into smooth muscle cells (SMC) which is illustrated by the expression of SMC markers. CONCLUSION: hADSCs seeded on the multilayered PLCL sheets has the potential to differentiate into SMC, thus facilitating the recovery of compliance and contractility of the injured bladder.
Scientific Reports, 2021
Complications associated with urinary bladder augmentation provide the motivation to delineate alternative bladder tissue regenerative engineering strategies. We describe the results of varying the proportion of bone marrow (BM) mesenchymal stem cells (MSCs) to CD34 + hematopoietic stem/progenitor cells (HSPCs) co-seeded onto synthetic POC [poly(1,8 octamethylene citrate)] or small intestinal submucosa (SIS) scaffolds and their contribution to bladder tissue regeneration. Human BM MSCs and CD34 + HSPCs were co-seeded onto POC or SIS scaffolds at cell ratios of 50 K CD34 + HSPCs/15 K MSCs (CD34-50/MSC15); 50 K CD34 + HSPCs/30 K MSCs (CD34-50/MSC30); 100 K CD34 + HSPCs/15 K MSCs (CD34-100/MSC15); and 100 K CD34 + HSPCs/30 K MSCs (CD34-100/MSC30), in male (M/POC; M/SIS; n = 6/cell seeded scaffold) and female (F/POC; F/SIS; n = 6/cell seeded scaffold) nude rats (n = 96 total animals). Explanted scaffold/composite augmented bladder tissue underwent quantitative morphometrics following hi...
Journal of Biomedical Materials Research Part A, 2020
Polymers and scaffolds are the most significant tools in regenerative medicine. Urogenital disorders are an important group of diseases that greatly affect the patient's life expectancy and quality. Reconstruction of urogenital defects is one of the current challenges in regenerative medicine. Regenerative medicine, as well as tissue engineering, may offer suitable approaches while the tools needed are appropriate materials and cells. Autologous urothelial cells obtained from biopsy, bone marrow-derived stem cells, adipose stem cells and urine-derived stem cells that expressed mesenchymal cell markers are the cells that mainly used. In addition, two main types of biomaterials mainly exist; synthetic polymers and composite scaffolds that are biodegradable polymers with controllable properties and naturally derived biomaterials such as extracellular matrix components and acellular tissue matrices. In this review, we present and evaluate the most This article is protected by copyright. All rights reserved. appropriate and suitable scaffolds (naturally derived and synthetic polymers) and cells applied in urogenital reconstruction.
F1000 - Post-publication peer review of the biomedical literature, 2017
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering.
Regenerative Medicine and Tissue Engineering, 2013
International Journal of Urology, 2010
To overcome problems of damaged urinary tract tissues and complications of current procedures, tissue engineering (TE) techniques and stem cell (SC) research have achieved great progress. Although diversity of techniques is used , urologists should know the basics. We carried out a literature review regarding the basic principles and applications of TE and SC technologies in the genitourinary tract. We carried out MEDLINE/PubMed searches for English articles until March 2010 using a combination of the following keywords: bladder, erectile dysfunction, kidney, prostate, Peyronie's disease, stem cells, stress urinary incontinence, testis, tissue engineering, ureter, urethra and urinary tract. Retrieved abstracts were checked , and full versions of relevant articles were obtained. Scientists have achieved great advances in basic science research. This is obvious by the tremendous increase in the number of publications. We divided this review in two topics; the first discusses basic science principles of TE and SC, whereas the second part delineates current clinical applications and advances in urological literature. TE and SC applications represent an alternative resource for treating complicated urological diseases. Despite the paucity of clinical trials, the promising results of animal models and continuous work represents the hope of treating various urological disorders with this technology.
Cell Transplantation, 2017
A variety of tissue engineering techniques utilizing different cells and biomaterials are currently being explored to construct urinary bladder walls de novo, but so far no approach is clearly superior. The aim of this study was to determine whether mesenchymal stem cells (MSCs) isolated from different sources, (bone marrow [BM-MSCs] and adipose tissue [ADSCs]), differ in their potential to regenerate smooth muscles in tissue-engineered urinary bladders and to determine an optimal number of MSCs for urinary bladder smooth muscle regeneration. Forty-eight rats underwent hemicystectomy and bladder augmentation with approximately 0.8 cm2 graft. In the first and second groups, urinary bladders were reconstructed with small intestinal submucosa (SIS) seeded with 10 × 106 or 4 × 106 ADSCs/cm2, respectively. In the third and fourth groups, urinary bladders were augmented with SIS seeded with 10 × 106 or 4 × 106 BM-MSCs/cm2, respectively. In the fifth group, urinary bladders were augmented ...
PeerJ, 2021
BackgroundCongenital abnormalities, cancers as well as injuries can cause irreversible damage to the urinary tract, which eventually requires tissue reconstruction. Smooth muscle cells, endothelial cells, and urothelial cells are the major cell types required for the reconstruction of lower urinary tract. Adult stem cells represent an accessible source of unlimited repertoire of untransformed cells.AimFetal bovine serum (FBS) is the most vital supplement in the culture media used for cellular proliferation and differentiation. However, due to the increasing interest in manufacturing xeno-free stem cell-based cellular products, optimizing the composition of the culture media and the serum-type used is of paramount importance. In this study, the effects of FBS and pooled human platelet (pHPL) lysate were assessed on the capacity of human adipose-derived stem cells (ADSCs) to differentiate into urothelial-like cells. Also, we aimed to compare the ability of both conditioned media (CM) ...
Tissue Engineering Part A, 2012
Urinary pathology requiring urinary diversion, partial or full bladder replacement, is a significant clinical problem affecting *14,000 individuals annually in the United States alone. The use of gastrointestinal tissue for urinary diversion or bladder reconstruction/replacement surgeries is frequently associated with complications. To try and alleviate or reduce the frequency of these complications, tissue engineering and regenerative medicine strategies have been developed using bio-absorbable materials seeded with cells derived from the bladder. However, bladder-sourced cells may not always be suitable for such applications, especially in patients with bladder cancer. In this study, we describe the isolation and characterization of smooth muscle cells (SMCs) from porcine adipose and peripheral blood that are phenotypically and functionally indistinguishable from bladder-derived SMCs. In a preclinical Good Laboratory Practice study, we demonstrate that autologous adipose-and peripheral bloodderived SMCs may be used to seed synthetic, biodegradable tubular scaffold structures and that implantation of these seeded scaffolds into a porcine cystectomy model leads to successful de novo regeneration of a tubular neoorgan composed of urinary-like neo-tissue that is histologically identical to native bladder. The ability to create urologic structures de novo from scaffolds seeded by autologous adipose-or peripheral blood-derived SMCs will greatly facilitate the translation of urologic tissue engineering technologies into clinical practice.
Engineered functional organs or tissues, created with autologous somatic cells and seeded on biodegradable or hydrogel scaffolds, have been developed for use in individuals with tissue damage suffered from congenital disorders, infection, irradiation, or cancer. However, in those patients, abnormal cells obtained by biopsy from the compromised tissue could potentially contaminate the engineered tissues. Thus, an alternative cell source for construction of the neo-organ or functional recovery of the injured or diseased tissues would be useful. Recently, we have found stem cells existing in the urine. These cells are highly expandable, and have self-renewal capacity, paracrine properties, and multi-differentiation potential. As a novel cell source, urine-derived stem cells (USCs) provide advantages for cell therapy and tissue engineering applications in regeneration of various tissues, particularly in the genitourinary tract, because they originate from the urinary tract system. Importantly, USCs can be obtained via a non-invasive, simple, and low-cost approach and induced with high efficiency to differentiate into three dermal cell lineages.
International Journal of Molecular Sciences
Biologic scaffolds composed of extracellular matrix components have been proposed to repair and reconstruct a variety of tissues in clinical and pre-clinical studies. Injectable gels can fill and conform any three-dimensional shape and can be delivered to sites of interest by minimally invasive techniques. In this study, a biological gel was produced from a decellularized porcine urinary bladder by enzymatic digestion with pepsin. The enzymatic digestion was confirmed by visual inspection after dissolution in phosphate-buffered saline solution and Fourier-transform infrared spectroscopy. The rheological and biological properties of the gel were characterized and compared to those of the MatrigelTM chosen as a reference material. The storage modulus G’ reached 19.4 ± 3.7 Pa for the 30 mg/mL digested decellularized bladder gels after ca. 3 h at 37 °C. The results show that the gel formed of the porcine urinary bladder favored the spontaneous differentiation of human and rabbit adipose...
World Journal of Urology, 2013
PURPOSE: Bladder outflow obstruction (BOO) is common in the elderly and can result in bladder voiding dysfunction (BVD) due to severe bladder muscle damage. The goal of this research was to evaluate the use of adult stem cells for the treatment of BVD due to decreased muscle contractility in a rat model. MATERIALS AND METHODS: Adipose-derived stem cells (ADSCs) and muscle precursor cells (MPCs) were harvested from male Lewis rats and expanded in culture. BOO was induced by tying a suture around the urethra. Six weeks after obstruction, the development of BVD was confirmed by cystometric analysis in conscious rats, histology and molecular investigations. Injection of ADSCs or MPCs into the bladder wall and synchronous deligation was performed 6 weeks after the obstruction. After stem-cell treatment, morphological and functional changes were assessed. Age-matched rats and animals without cellular therapy but deligation-only served as controls. RESULTS: Voiding pressures decreased progressively 6 weeks after obstruction with increased bladder capacities. Structural changes of the detrusor muscle occurred during the time of obstruction with an increased connective tissue-to-smooth muscle ratio and decreased SMA/smoothelin expression. After stem-cell injection, improved voiding pressures and voiding volumes were observed together with recovered tissue architecture. RT-PCR and Western blotting showed an up-regulation of important contractile proteins. CONCLUSIONS: We established a reliable model for BVD and demonstrated that ADSCs and MPCs can prevent pathophysiological remodelling and provide regenerated bladder tissue and function.
Urologic Clinics of North America, 2009
Brazilian Journal of Biology
Detrusor hypocontractility (DH) is a disease without a gold standard treatment in traditional medicine. Therefore, there is a need to develop innovative therapies. The present report presents the case of a patient with DH who was transplanted with 2 x 106 adipose tissue-derived mesenchymal stem cells twice and achieved significant improvements in their quality of life. The results showed that cell therapy reduced the voiding residue from 1,800 mL to 800 mL, the maximum cystometric capacity from 800 to 550 mL, and bladder compliance from 77 to 36.6 mL/cmH2O. Cell therapy also increased the maximum flow from 3 to 11 mL/s, the detrusor pressure from 08 to 35 cmH2O, the urine volume from 267 to 524 mL and the bladder contractility index (BCI) value from 23 to 90. The International Continence on Incontinence Questionnaire - Short Form score decreased from 17 to 8. Given the above, it is inferred that the transplantation of adipose tissue-derived mesenchymal stem cells is an innovative an...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.