Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003, Science
Kinesin is a double-headed motor protein that moves along microtubules in 8-nanometer steps. Two broad classes of model have been invoked to explain kinesin movement: hand-over-hand and inchworm. In hand-over-hand models, the heads exchange leading and trailing roles with every step, whereas no such exchange is postulated for inchworm models, where one head always leads. By measuring the stepwise motion of individual enzymes, we find that some kinesin molecules exhibit a marked alternation in the dwell times between sequential steps, causing these motors to "limp" along the microtubule. Limping implies that kinesin molecules strictly alternate between two different conformations as they step, indicative of an asymmetric, hand-over-hand mechanism.
Journal of Molecular Biology, 2001
We describe a theoretical and experimental analysis of the interaction between microtubules and dimeric motor proteins (kinesin, NCD), with special emphasis on the stoichiometry of the interaction, cooperative effects, and their consequences for the interpretation of biochemical and image reconstruction results. Monomeric motors can bind equivalently to microtubules without interference, at a stoichiometry of one motor head per tubulin subunit (ab-heterodimer). By contrast, dimeric motors can interact with stoichiometries ranging between one and two heads per tubulin subunit, depending on binding constants of the ®rst head and the subsequent binding of the second head, and the concentration of dimers in solution. Further, we show that an attractive interaction between the bound motor molecules can explain the higher periodicities observed in decorated microtubules (e.g. 16 nm periodicity), and the nonuniform decoration of a population of microtubules and give an estimate of the strength of this interaction.
The Journal of cell biology, 1998
A single kinesin molecule can move for hundreds of steps along a microtubule without dissociating. One hypothesis to account for this processive movement is that the binding of kinesin's two heads is coordinated so that at least one head is always bound to the microtubule. To ...
Kinesins form a large and diverse superfamily of proteins involved in numerous important cellular processes. The majority of them are molecular motors moving along microtubules. Conversion of chemical energy into mechanical work is accomplished in a sequence of events involving both biochemical and conformational alternation of the motor structure called the mechanochemical cycle. Different members of the kinesin superfamily can either perform their function in large groups or act as single molecules. Conventional kinesin, a member of the kinesin-1 subfamily, exemplifies the second type of motor which requires tight coordination of the mechanochemical cycle in two identical subunits to accomplish processive movement toward the microtubule plus end. Recent results strongly support an asymmetric handover hand model of ''walking'' for this protein. Conformational strain between two subunits at the stage of the cycle where both heads are attached to the microtubule seems to be a major factor in intersubunit coordination, although molecular and kinetic details of this phenomenon are not yet deciphered. We discuss also current knowledge concerning intersubunit coordination in other kinesin subfamilies. Members of the kinesin-3 class use at least three different mechanisms of movement and can translocate in monomeric or dimeric forms. It is not known to what extent intersubunit coordination takes place in Ncd, a dimeric member of the kinesin-14 subfamily which, unlike conventional kinesin, exercises a power-stroke toward the microtubule minus end. Eg5, a member of the kinesin-5 subfamily is a homotetrameric protein with two kinesin-1-like dimeric halves controlled by their relative orientation on two microtubules. It seems that diversity of subunit organization, quaternary structures and cellular functions in the kinesin superfamily are reflected also by the divergent extent and mechanism of intersubunit coordination during kinesin movement along microtubules.
Nature, 1999
Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules. The forcegenerating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of a ,15-amino-acid region (the neck linker) in kinesin using electron paramagnetic resonance,¯uorescence resonance energy transfer, pre-steady state kinetics and cryo-electron microscopy. This region becomes immobilized and extended towards the microtubule`plus' end when kinesin binds microtubules and ATP, and reverts to a more mobile conformation when g-phosphate is released after nucleotide hydrolysis. This conformational change explains both the direction of kinesin motion and processive movement by the kinesin dimer.
eLife
Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails s...
Traffic, 2009
The processive motor kinesin-1 moves unidirectionally toward the plus end of microtubules. This process can be visualized by total internal reflection fluorescence (TIRF) microscopy of kinesin bound to a carboxylated Quantum dot (Qdot), which acts both as cargo and label. Surprisingly, when kinesin is bound to an anti-HIS Qdot, it shows diffusive movement on microtubules, which decreased in favor of processive runs with increasing salt concentration. This observation implies that kinesin movement on microtubules is governed by its conformation, as it is well-established that kinesin undergoes a salt-dependent transition from a folded (inactive) to an extended (active) molecule. A truncated kinesin lacking the last 75 amino acids (kinesin-ΔC) showed both processive and diffusive movement on microtubules. The extent of each behavior depends on the relative amounts of ADP and ATP, with purely diffusive movement occurring in ADP alone. Taken together, these data imply that folded kinesin.ADP can exist in a state that diffuses along the microtubule lattice without expending energy. This mechanism may facilitate the ability of kinesin to pick up cargo, and/or allow the kinesin/cargo complex to stay bound after encountering obstacles.
Kinesin-5 motors organize mitotic spindles by sliding apart anti-parallel microtubules. They are homotetramers composed of two antiparallel dimers placing orthogonal motor and tail domains at opposite ends of a bipolar minifilament. Here, we describe a regulatory mechanism, involving direct binding of the tail to motor domain and reveal its fundamental role in microtubule sliding motility. Biochemical analyses reveal that the tail down-regulates microtubule-activated ATP hydrolysis by specifically engaging the motor in the nucleotide-free or ADP-bound states. Cryo-EM structures reveal that the tail stabilizes a unique conformation of the motor N-terminal subdomain opening its active site. Full-length kinesin-5 motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering along microtubules. The tail is critical for motors to zipper together two microtubules by generating substantial forces within sliding zon...
Biophysical Journal, 1996
We studied the fluctuation in the translational sliding movement of microtubules driven by kinesin in a motility assay in vitro. By calculating the mean-square displacement deviation from the average as a function of time, we obtained motional diffusion coefficients for microtubules and analyzed the dependence of the coefficients on microtubule length. Our analyses suggest that 1) the motional diffusion coefficient consists of the sum of two terms, one that is proportional to the inverse of the microtubule length (as the longitudinal diffusion coefficient of a filament in Brownian movement is) and another that is independent of the length, and 2) the length-dependent term decreases with increasing kinesin concentration. This latter term almost vanishes within the length range we studied at high kinesin concentrations. From the length-dependence relationship, we evaluated the friction coefficient for sliding microtubules. This value is much larger than the solvent friction and thus consistent with protein friction. The length independence of the motional diffusion coefficient observed at sufficiently high kinesin concentrations indicates the presence of correlation in the sliding movement fluctuation. This places significant constraint on the possible mechanisms of the sliding movement generation by kinesin motors in vitro.
Cell motility and the cytoskeleton, 2008
Conventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions. In addition, many microtubules moved across the filaments at the same speed with various angles between the axes of the microtubule and catchin filament. Kinesin/catchin chimera proteins with a shorter kinesin neck domain were also prepared. Those without the whole ...
Molecular informatics, 2017
The ability to predict the cellular dynamics of intracellular transport has enormous potential to impact human health. A key transporter is kinesin-1, an ATP-driven molecular motor that shuttles cellular cargos along microtubules (MTs). The dynamics of kinesins depends critically on their unbinding rate from MT, which varies depending on the force direction applied on the motor, i.e. the force-unbinding rate relation is asymmetric. However, it remains unclear how changing the force direction from resisting (applied against the motion direction) to assisting (applied in the motion direction) alters the kinesin's unbinding and stepping. Here, we propose a theoretical model for the influence of the force direction on the stepping dynamics of a single kinesin. The model shows that the asymmetry of the force-unbinding rate relation is independent of ATP concentration. It also reveals that the synthesis of ATP from backward stepping under assisting forces is less likely than under res...
Molecular Cell, 2006
Kinesin motor proteins release nucleotide upon interaction with microtubules (MTs), then bind and hydrolyze ATP to move along the MT. Although crystal structures of kinesin motors bound to nucleotides have been solved, nucleotide-free structures have not. Here, using cryomicroscopy and three-dimensional (3D) reconstruction, we report the structure of MTs decorated with a Kinesin-14 motor, Kar3, in the nucleotide-free state, as well as with ADP and AMPPNP, with resolution sufficient to show a helices. We find large structural changes in the empty motor, including melting of the switch II helix a4, closure of the nucleotide binding pocket, and changes in the central b sheet reminiscent of those reported for nucleotide-free myosin crystal structures. We propose that the switch II region of the motor controls docking of the Kar3 neck by conformational changes in the central b sheet, similar to myosin, rather than by rotation of the motor domain, as proposed for the Kif1A kinesin motor.
Journal of Molecular Biology, 2008
An expanding collection of proteins localises to microtubule ends to regulate cytoskeletal dynamics and architecture by unknown molecular mechanism(s). Electron microscopy is invaluable for studying microtubule structure, but because microtubule ends are heterogeneous, their structures are difficult to determine. We therefore investigated whether tubulin oligomers induced by the drug dolastatin could mimic microtubule ends. The microtubule end-dependent ATPase of kinesin-13 motors is coupled to microtubule depolymerisation. Significantly, kinesin-13 motor ATPase activity is stimulated by dolastatin-tubulin oligomers suggesting, first, that these oligomers share properties with microtubule ends and, second, that the physical presence of an end is less important than terminal tubulin flexibility for microtubule end recognition by the kinesin-13 motor. Using electron microscopy, we visualised the kinesin-13 motor-dolastatin-tubulin oligomer interaction in nucleotide states mimicking steps in the ATPase cycle. This enabled us to detect conformational changes that the motor undergoes during depolymerisation. Our data suggest that such tubulin oligomers can be used to examine other microtubule end-binding proteins.
The Journal of Cell Biology, 2008
Science, 1999
A single kinesin molecule can move “processively” along a microtubule for more than 1 micrometer before detaching from it. The prevailing explanation for this processive movement is the “walking model,” which envisions that each of two motor domains (heads) of the kinesin molecule binds coordinately to the microtubule. This implies that each kinesin molecule must have two heads to “walk” and that a single-headed kinesin could not move processively. Here, a motor-domain construct of KIF1A, a single-headed kinesin superfamily protein, was shown to move processively along the microtubule for more than 1 micrometer. The movement along the microtubules was stochastic and fitted a biased Brownian-movement model.
Biophysical reviews, 2011
Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or "heads", to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1•microtubule complexes for all three of this motor's principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution c...
Physical Review E, 2008
Motor proteins are active enzyme molecules that play a crucial role in many biological processes. They transform the chemical energy into the mechanical work and move unidirectionally along rigid cytoskeleton filaments. Single-molecule experiments suggest that motor proteins, consisting of two motor domains, move in a handover hand mechanism when each subunit changes between trailing and leading positions in alternating steps, and these subunits do not interact with each other. However, recent experiments on heterodimeric kinesins suggest that the motion of motor domains is not independent, but rather strongly coupled and coordinated, although the mechanism of these interactions are not known. We propose a simple discrete stochastic model to describe the dynamics of homodimeric and heterodimeric two-headed motor proteins. It is argued that interactions between motor domains modify free energy landscapes of each motor subunit, and motor proteins still move via the handover hand mechanism but with different transitions rates. Our calculations of biophysical properties agree with experimental observations. Several ways to test the theoretical model are proposed.
Kinesins are molecular motors that walk along microtubules, hauling cargo through the crowded cytoplasm of eukaryotic cells. At low load, kinesins almost always step towards microtubule plus ends, but at high load, forward stepping slows down and backsteps appear. Current models envisage that backsteps occur by directional reversal of the forwards walking mechanism. Here we report to the contrary, that at substall forces, kinesin steps back using a rescued detachment mechanism. We show (1) that dwell times for forward steps are shorter, on average, than dwell times for backsteps or detachments (2) that dwell times for backsteps and detachments are indistinguishable and (3) that the balance of backsteps and detachments can be tilted dramatically, without affecting forward steps. All three points hold not only for kinesin stepping on brain GDP-taxol MTs, but also for brain GDP MTs, brain GMPCPP-epothilone MTs, S. pombe GMPCPP-epothilone MTs and subtilisin-treated GDP-taxol MTs. Our da...
Cell, 1997
proteins in axonal transport and the isolation of kinesin based on video microscopic assays of movement (Brady, 1985;. From a structural point of view, the major breakthrough was the recent X-ray analysis of the head domains of kinesin and the related motor ncd . The protein has the architecture of an ␣/ protein, with a Germany † European Synchrotron Radiation Facility central  sheet sandwiched between three ␣ helices on either side. The structure showed a surprising similarity F-38042 Grenoble France to other nucleotide-binding proteins such as G proteins (e.g., the GTP-binding domains of p21 ras , G␣, or elongation factor Tu) or the ATP-binding domain of myosin. In particular, the homology with myosin sparked expecta-Summary tions that the two motor proteins might exhibit a similar mechanism of motility. There was, however, one missing The dimeric form of the kinesin motor and neck dolink: the lever, an ␣-helical neck domain, was clearly main from rat brain with bound ADP has been solved visible in the myosin structure, but absent from the by X-ray crystallography. The two heads of the dimer kinesin or ncd structures, presumably due to disorder.
Biophysical Journal, 2011
The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.
eLife, 2017
The detailed basis of walking by dimeric molecules of kinesin along microtubules has remained unclear, partly because available structural methods have been unable to capture microtubule-bound intermediates of this process. Utilizing novel electron cryomicroscopy methods, we solved structures of microtubule-attached, dimeric kinesin bound to an ATP analog. We find that under these conditions, the kinesin dimer can attach to the microtubule with either one or two motor domains, and we present sub-nanometer resolution reconstructions of both states. The former structure reveals a novel kinesin conformation that revises the current understanding of how ATP binding is coupled to forward stepping of the motor. The latter structure indicates how tension between the two motor domains keeps their cycles out of phase in order to stimulate directional motility. The methods presented here pave the way for future structural studies of a variety of challenging macromolecules that bind to microtu...
Proceedings of The National Academy of Sciences, 2008
In vivo studies suggest that centromeric protein E (CENP-E), a kinesin-7 family member, plays a key role in the movement of chromosomes toward the metaphase plate during mitosis. How CENP-E accomplishes this crucial task, however, is not clear. Here we present single-molecule measurements of CENP-E that demonstrate that this motor moves processively toward the plus end of microtubules, with an average run length of 2.6 ؎ 0.2 m, in a hand-over-hand fashion, taking 8-nm steps with a stall force of 6 ؎ 0.1 pN. The ATP dependence of motor velocity obeys Michaelis-Menten kinetics with K M,ATP ؍ 35 ؎ 5 M. All of these features are remarkably similar to those for kinesin-1-a highly processive transport motor. We, therefore, propose that CENP-E transports chromosomes in a manner analogous to how kinesin-1 transports cytoplasmic vesicles. mitotic motor ͉ single molecule C ell division requires proper attachment of chromosomes to spindle microtubules, which occurs by means of a multiprotein complex called the kinetochore. Centromeric protein E (CENP-E), a kinetochore-associated member of the kinesin superfamily, plays an essential role in capturing and positioning chromosomes to the mitotic spindle during metaphase (1). CENP-E localizes to kinetochores throughout chromosome congression and remains there until anaphase, at which point it relocates to the spindle midzone and is subsequently degraded (2).
Science (New York, N.Y.), 2012
Nature, 2005
During transcription, RNA polymerase (RNAP) moves processively along a DNA template, creating a complementary RNA. Here we present the development of an ultra-stable optical trapping system with ångström-level resolution, which we used to monitor transcriptional elongation by single molecules of Escherichia coli RNAP. Records showed discrete steps averaging 3.7^0.6 Å , a distance equivalent to the mean rise per base found in B-DNA. By combining our results with quantitative gel analysis, we conclude that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA. We also determined the force-velocity relationship for transcription at both saturating and subsaturating nucleotide concentrations; fits to these data returned a characteristic distance parameter equivalent to one base pair. Global fits were inconsistent with a model for movement incorporating a power stroke tightly coupled to pyrophosphate release, but consistent with a brownian ratchet model incorporating a secondary NTP binding site.
Lab on a Chip, 2012
This paper reports development of an integrated fiber-optic microfluidic device for measuring muscular force of small nematode worms with high sensitivity, high data reliability, and simple device structure. A moving nematode worm squeezed through multiple detection points (DPs) created between a thinned single mode fiber (SMF) cantilever and a sine-wave channel with open troughs. The SMF cantilever was deflected by the normal force imposed by the worm, reducing optical coupling from the SMF to a receiving multimode fiber (MMF). Thus, multiple force data could be obtained for the worm-SMF contacts to verify with each other, improving data reliability. A noise equivalent displacement of the SMF cantilever was 0.28 mm and a noise equivalent force of the device was 143 nN. We demonstrated the workability of the device to detect muscular normal forces of the parasitic nematodes Oesophagotomum dentatum L3 larvae on the SMF cantilever. Also, we used this technique to measure force responses of levamisole-sensitive (SENS) and resistant (LERV) O. dentatum isolates in response to different doses of the anthelmintic drug, levamisole. The results showed that both of the isolates generated a larger muscular normal force when exposed to a higher concentration of levamisole. We also noticed muscular force phenotype differences between the SENS and LERV worms: the SENS muscles were more sensitive to levamisole than the LERV muscles. The ability to quantify the muscular forces of small nematode worms will provide a new approach for screening mutants at single animal resolution. Also, the ability to resolve small differences in muscular forces in different environmental conditions will facilitate phenotyping different isolates of nematodes. Thus, the present technology can potentially benefit and advance the current whole animal assays. { Electronic supplementary information (ESI) available: a video clip showing a typical body contact between a parasitic nematode (levamisole-sensitive O. dentatum larvae) and the thinned single mode optical fiber in the microfluidic channel, and the resultant bending of the fiber. See
Physical Review E, 2008
A simple flashing ratchet model in two dimensions is proposed to simulate the hand-over-hand motion of two head molecular motors like kinesin. Extensive Langevin simulations of the model are performed. Good qualitative agreement with the expected behavior is observed. We discuss different regimes of motion and efficiency depending of model parameters.
The Journal of Chemical Physics, 2006
General discrete one-dimensional stochastic models to describe the transport of single molecules along coupled parallel lattices with period N are developed. Theoretical analysis that allows to calculate explicitly the steady-state dynamic properties of single molecules, such as mean velocity V and dispersion D, is presented for N = 1 and N = 2 models. For the systems with N > 2 exact analytic expressions for the large-time dynamic properties are obtained in the limit of strong coupling between the lattices that leads to dynamic equilibrium between two parallel kinetic pathways.
Physical Review E, 2005
Kinesins are processive motor proteins that move along microtubules in a stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent experiments have investigated the coupling between the individual steps of single kinesin molecules and ATP hydrolysis, taking explicitly into account forward steps, backward steps, and detachments. A theoretical study of mechanochemical coupling in kinesins, which extends the approach used successfully to describe the dynamics of motor proteins, is presented. The possibility of irreversible detachments of kinesins from the microtubules is explicitly taken into account. Using the method of first-passage times, experimental data on the mechanochemical coupling in kinesins are fully described using the simplest two-state model. It is shown that the dwell times for the kinesin to move one step forward or backward, or to dissociate irreversibly, are the same, although the probabilities of these events are different. It is concluded that the current theoretical view-that only the forward motion of the motor protein molecule is coupled to ATP hydrolysis-is consistent with all available experimental observations for kinesins.
Physical Review E, 2006
The effect of interactions on dynamics of coupled motor proteins is investigated theoretically. A simple stochastic discrete model, that allows to calculate explicitly the dynamic properties of the system, is developed. It is shown that there are two dynamic regimes, depending on the interaction between the particles. For strong interactions the motor proteins move as one tight cluster, while for weak interactions there is no correlation in the motion of the proteins, and the particle separation increases steadily with time. The boundary between two dynamic phases is specified by a critical interaction that has a non-zero value only for the coupling of the asymmetric motor proteins, and it depends on the temperature and the transitions rates.
Lecture Notes in Physics, 2007
There is a growing pool of evidence showing the biological importance of membrane nanotubes (with diameter of a few tens of nanometers and length upto tens of microns) in various intra-and intercellular transport processes. These ubiquitous structures are often formed from flat membranes by highly localized forces generated by either the pulling of motor proteins or the pushing of polymerizing cytoskeletal filaments. In this chapter we give an overview of the theory of membrane nanotubes, their biological relevance, and the most recent experiments designed for the study of their formation and dynamics. We also discuss the effect of membrane proteins or lipid composition on the shape of the tubes, and the effect of antagonistic motor proteins on tube formation.
Biology of the Cell, 2006
Force and torque, stress and strain or work are examples of mechanical and elastic actions which are intimately linked to chemical reactions in the cell. Optical tweezers are a light-based method which allows the real-time manipulation of single molecules and cells to measure their interactions. We describe the technique, briefly reviewing the operating principles and the potential capabilities to the study of biological processes. Additional emphasis is given to the importance of fluctuations in biology and how single-molecule techniques allow access to them. We illustrate the applications by addressing experimental configurations and recent progresses in molecular and cell biology.
Journal of Biological Chemistry, 2004
Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/ KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steadystate parameters were: for Eg5-367: k cat = 5.5 s −1 , K 1/2,Mt = 0.7 μM, and K m,ATP = 25 μM; and for Eg5-437: k cat = 2.9 s −1 , K 1/2,Mt = 4.5 μM, and K m,ATP = 19 μM. 2′(3′)-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 μM −1 s −1 , followed immediately by ATP hydrolysis at 15 s −1 . ATP-dependent Mt·Eg5 dissociation was relatively slow and rate-limiting at 8 s −1 with mantADP release at 40 s −1 . Surprisingly, Eg5-367 binds microtubules more effectively (11 μM −1 s −1 ) than Eg5-437 (0.7 −M −1 s −1 ), consistent with the steady-state K 1/2,Mt and the mantADP release K 1/2,Mt . These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steadystate turnover.
Proceedings of the National Academy of Sciences, 2008
We report a method for single-molecule detection and biomolecular structural mapping based on dual-color imaging and automated colocalization of bioconjugated nanoparticle probes at nanometer precision. In comparison with organic dyes and fluorescent proteins, nanoparticle probes such as fluorescence energytransfer nanobeads and quantum dots provide significant advantages in signal brightness, photostability, and multicolor-light emission. As a result, we have achieved routine two-color superresolution imaging and single-molecule detection with standard fluorescence microscopes and inexpensive digital color cameras. By using green and red nanoparticles to simultaneously recognize two binding sites on a single target, individual biomolecules such as nucleic acids are detected and identified without target amplification or probe/target separation. We also demonstrate that a powerful astrophysical method (originally developed to analyze crowded stellar fields) can be used for automated and rapid statistical analysis of nanoparticle colocalization signals. The ability to rapidly localize bright nanoparticle probes at nanometer precision has implications not only for ultrasensitive medical detection but also for structural mapping of molecular complexes in which individual components are tagged with color-coded nanoparticles.
Cell division, 2006
Understanding how molecular motors generate force and move microtubules in mitosis is essential to understanding the physical mechanism of cell division. Recent measurements have shown that one mitotic kinesin superfamily member, Eg5, is mechanically processive and capable ...
Nature, 2005
Kinesins are microtubule-based motor proteins that power intracellular transport 1,2 . Most kinesin motors, exemplified by Kinesin-1, move towards the microtubule plus end, and the structural changes that govern this directional preference have been described 3-5 . By contrast, the nature and timing of the structural changes underlying the minus-end-directed motility of Kinesin-14 motors (such as Drosophila Ncd 6,7 ) are less well understood. Using cryo-electron microscopy, here we demonstrate that a coiled-coil mechanical element of microtubule-bound Ncd rotates ,708 towards the minus end upon ATP binding. Extending or shortening this coiled coil increases or decreases velocity, respectively, without affecting ATPase activity. An unusual Ncd mutant that lacks directional preference 8 shows unstable nucleotide-dependent conformations of its coiled coil, underscoring the role of this mechanical element in motility. These results show that the forceproducing conformational change in Ncd occurs on ATP binding, as in other kinesins, but involves the swing of a lever-arm mechanical element similar to that described for myosins.
Proceedings of the National Academy of Sciences, 2012
The molecular chaperone and heat shock protein 90 (Hsp90) exists mainly as a homodimer in the cytoplasm. Each monomer has an ATPase in its N-terminal domain and undergoes large conformational changes during Hsp90's mechanochemical cycle. The threecolor single-molecule assay and data analysis presented in the following allows one to observe at the same time nucleotide binding and the conformational changes in Hsp90. Surprisingly, and completely unlike the prior investigated systems, nucleotides can bind to the N-terminally open and closed state without strictly forcing the protein into a specific conformation. Both the transitions between the conformational states and the nucleotide binding/ unbinding are mainly thermally driven. Furthermore, the two ATP binding sites show negative cooperativity; i.e., nucleotides do not bind independently to the two monomers. We thus reveal a picture of how nucleotide binding and conformational changes are connected in the molecular chaperone Hsp90, which has far-ranging consequences for its function and is distinct from previously investigated motor proteins.
Physical Review E, 2008
We study a discrete stochastic model of a molecular motor. This discrete model can be viewed as a minimal ratchet model. We extend our previous work on this model, by further investigating the constraints imposed by the fluctuation theorem on the operation of a molecular motor far from equilibrium. In this work, we show the connections between different formulations of the fluctuation theorem. One formulation concerns the generating function of the currents while another one concerns the corresponding large deviation function, which we have calculated exactly for this model. A third formulation concerns the ratio of the probability of observing a velocity v to the same probability of observing a velocity −v. Finally, we show that all the formulations of the fluctuation theorem can be understood from the notion of entropy production.
Physical Review Letters, 2007
We investigate theoretically the violations of Einstein and Onsager relations, and the efficiency for a single processive motor operating far from equilibrium using an extension of the two-state model introduced by Kafri et al. [Biophys. J. 86, 3373 (2004)]. With the aid of the Fluctuation Theorem, we analyze the general features of these violations and this efficiency and link them to mechanochemical couplings of motors. In particular, an analysis of the experimental data of kinesin using our framework leads to interesting predictions that may serve as a guide for future experiments. 87.16.Nn, 05.70.Ln Motor proteins are nano-machines that convert chemical energy into mechanical work and motion . Important examples include kinesin, myosin, and RNA polymerase. Despite a number of theoretical models , understanding the mechanochemical transduction mechanisms behind these motors remains a significant challenge . Recent advances in experimental techniques to probe the fluctuations of single motors provide ways to gain insight into their kinetic pathways [10]. However, a general description for fluctuations of systems driven out of equilibrium, and in particular of motors, is still lacking. Recently, the Fluctuation Theorem (FT) has emerged as a promising framework to characterize fluctuations in far-from-equilibrium regimes where Einstein and Onsager relations no longer hold . In a nutshell, FT states that the probability distribution for the entropy production rate obeys a symmetry relation, and it has been verified in a number of beautiful experiments on biopolymers and colloidal systems . In this Letter, we demonstrate that FT provides a natural framework in which thermodynamic constraints can be imposed on the operation of nanomachines far from equilibrium.
Laser Resonators, Microresonators, and Beam Control XVII, 2015
Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M 2 values in double-digits. We propose a method of 'interference' superfocusing of high-M 2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writing. Using axicons with apex angle 140 0 and rounded tip area as small as ~10 μm diameter, we demonstrate 2-4 μm diameter focused laser 'needle' beams with approximately 20 μm propagation length generated from multimode diode laser with beam propagation parameter M 2 =18 and emission wavelength of 960 nm. This is a few-fold reduction compared to the minimal focal spot size of ~11 μm that could be achieved if focused by an 'ideal' lens of unity numerical aperture. The same technique using a 160 0 axicon allowed us to demonstrate few-μm-wide laser 'needle' beams with nearly 100 μm propagation length with which to demonstrate optical trapping of 5-6 μm rat blood red cells in a water-heparin solution. Our results indicate the good potential of superfocused diode laser beams for applications relating to optical trapping and manipulation of microscopic objects including living biological objects with aspirations towards subsequent novel lab-on-chip configurations.
Nature Photonics, 2011
Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow highresolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.
Proceedings of the National Academy of Sciences, 2009
The bacterial flagellar motor drives the rotation of flagellar filaments and enables many species of bacteria to swim. Torque is generated by interaction of stator units, anchored to the peptidoglycan cell wall, with the rotor. Recent experiments [Yuan J, Berg HC (2008) Proc Natl Acad Sci USA 105:1182-1185] show that at near-zero load the speed of the motor is independent of the number of stators. Here, we introduce a mathematical model of the motor dynamics that explains this behavior based on a general assumption that the stepping rate of a stator depends on the torque exerted by the stator on the rotor. We find that the motor dynamics can be characterized by two timescales: the moving-time interval for the mechanical rotation of the rotor and the waitingtime interval determined by the chemical transitions of the stators. We show that these two timescales depend differently on the load, and that their cross-over provides the microscopic explanation for the existence of two regimes in the torque-speed curves observed experimentally. We also analyze the speed fluctuation for a single motor by using our model. We show that the motion is smoothed by having more stator units. However, the mechanism for such fluctuation reduction is different depending on the load. We predict that the speed fluctuation is determined by the number of steps per revolution only at low load and is controlled by external noise for high load. Our model can be generalized to study other molecular motor systems with multiple power-generating units.
Traffic (Copenhagen, Denmark), 2012
Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport.
Nature Communications, 2015
Optical and magnetic tweezers are widely employed to probe the mechanics and activity of individual biomolecular complexes. They rely on micrometer-sized particles to detect molecular conformational changes from the particle position. Real-time particle tracking with Ångström accuracy has so far been only achieved using laser detection through photodiodes. Here we demonstrate that camera-based imaging can provide a similar performance for all three dimensions. Particle imaging at kHz rates is combined with real-time data processing being accelerated by a graphics processing unit. For particles that are fixed in the sample cell we can detect 3 Å sized steps that are introduced by cell translations at rates of 10 Hz, while for DNAtethered particles 5 Å steps at 1 Hz can be resolved. Moreover, 20 particles can be tracked in parallel with comparable accuracy. Our approach provides a simple and robust way for highresolution tweezers experiments using multiple particles at a time.
Scientific reports, 2018
Multimode high-power laser diodes suffer from inefficient beam focusing, leading to a focal spot 10-100 times greater than the diffraction limit. This inevitably restricts their wider use in 'direct-diode' applications in materials processing and biomedical photonics. We report here a 'super-focusing' characteristic for laser diodes, where the exploitation of self-interference of modes enables a significant reduction of the focal spot size. This is achieved by employing a conical microlens fabricated on the tip of a multimode optical fibre using 3D laser nano-printing (also known as multi-photon lithography). When refracted by the conical surface, the modes of the fibre-coupled laser beam self-interfere and form an elongated narrow focus, usually referred to as a 'needle' beam. The multiphoton lithography technique allows the realisation of almost any optical element on a fibre tip, thus providing the most suitable interface for free-space applications of mul...
Journal of Biological Physics, 2013
We consider a modified energy depot model in the overdamped limit using an asymmetric energy conversion rate, which consists of linear and quadratic terms in an active particle's velocity. In order to analyze our model, we adopt a system of molecular motors on a microtubule and employ a flashing ratchet potential synchronized to a stochastic energy supply. By performing an active Brownian dynamics simulation, we investigate effects of the active force, thermal noise, external load, and energy-supply rate. Our model yields the stepping and stalling behaviors of the conventional molecular motor. The active force is found to facilitate the forwardly processive stepping motion, while the thermal noise reduces the stall force by enhancing relatively the backward stepping motion under external loads. The stall force in our model decreases as the energy-supply rate is decreased. Hence, assuming the Michaelis-Menten relation between the energy-supply rate and the ATP concentration, our model describes an ATP-dependent stall force in contrast to kinesin-1.
Biochemical Society Transactions, 2012
During the last 25 years, a vast amount of research has gone into understanding the mechanochemical cycle of kinesin-1 and similar processive motor proteins. An experimental method that has been widely used to this effect is the in vitro study of kinesin-1 molecules moving along microtubules while pulling a bead, the position of which is monitored optically while trapped in a laser focus. Analysing results from such experiments, in which thermally excited water molecules are violently buffeting the system components, can be quite difficult. At low loads, the effect of the mechanical properties of the entire molecule must be taken into account, as stalk compliance means the bead position recorded is only weakly coupled to the movement of the motor domains, the sites of ATP hydrolysis and microtubule binding. In the present review, findings on the mechanical and functional properties of the various domains of full-length kinesin-1 molecules are summarized and a computer model is prese...
Mater. Horiz.
This article describes the functions and mechanisms of particle and electron ratchets, and the interplay between theory and experiment in this field of non-equilibrium transport.
International journal of molecular sciences, 2008
Complete details of the thermodynamics and molecular mechanisms of ATP synthesis/hydrolysis and muscle contraction are offered from the standpoint of the torsional mechanism of energy transduction and ATP synthesis and the rotation-uncoiling-tilt (RUT) energy storage mechanism of muscle contraction. The manifold fundamental consequences and mechanistic implications of the unified theory for oxidative phosphorylation and muscle contraction are explained. The consistency of current mechanisms of ATP synthesis and muscle contraction with experiment is assessed, and the novel insights of the unified theory are shown to take us beyond the binding change mechanism, the chemiosmotic theory and the lever arm model. It is shown from first principles how previous theories of ATP synthesis and muscle contraction violate both the first and second laws of thermodynamics, necessitating their revision. It is concluded that the new paradigm, ten years after making its first appearance, is now perfe...
European journal for philosophy of science, 2021
New Mechanist philosophical models of "phenomenon reconstitution" understand the process to be driven by explanatory considerations. Here I discuss an episode of phenomenon reconstitution that occurred entirely within an experimental program dedicated to characterizing (rather than explaining) the phenomenon of kinesin motility. Rather than being driven by explanatory considerations, as standard mechanist views maintain, I argue that the phenomenon of kinesin motility was reconstituted to enhance researchers’ primary experimental tool—the single molecule motility assay.
Advances in Experimental Medicine and Biology, 2005
The European Physical Journal Plus
In the last decades, optical tweezers have progressively emerged as a unique tool to investigate the biophysical world, allowing to manipulate and control forces and movements of one molecule at a time with unprecedented resolution. In this review, we present the use of optical tweezers to perform single-molecule force spectroscopy investigations from an experimental perspective. After a comparison with other single-molecule force spectroscopy techniques, we illustrate at an introductory level the physical principles underlying optical trapping and the main experimental configurations employed nowadays in single-molecule experiments. We conclude with a brief summary of some remarkable results achieved with this approach in different biological systems, with the aim to highlight the great variety of experimental possibilities offered by optical tweezers to scientists interested in this research field.
2021
1 Science Education Department, Beijing Institute of Graphic Communication, Beijing 102600, China College of Science, Hebei University of Architecture, Zhangjiakou 075000, China School of science, Tianjin University, Tianjin 300072, China 4 School of science, Hebei University of Technology, Tianjin 300401, China Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China Corresponding author. E-mail: † [email protected]
Biomechanics and modeling in mechanobiology, 2015
Kinesin is a motor protein that delivers cargo inside a cell. Kinesin has many different families, but they perform basically same function and have same motions. The walking motion of kinesin enables the cargo delivery inside the cell. Autoinhibition of kinesin is important because it explains how function of kinesin inside a cell is stopped. Former researches showed that tail binding is related to autoinhibition of kinesin. In this work, we performed normal mode analysis with elastic network model using different conformation of kinesin to determine the effect of tail binding by considering four models such as functional form, autoinhibited form, autoinhibited form without tail, and autoinhibited form with carbon structure. Our calculation of the thermal fluctuation and cross-correlation shows the change of tail-binding region in structural motion. Also strain energy of kinesin showed that elimination of tail binding effect leads the structure to have energetically similar behavio...
Frontiers in immunology, 2018
Soluble factors are an essential means of communication between cells and their environment. However, many molecules readily interact with extracellular matrix components, giving rise to multiple modes of diffusion. The molecular quantification of diffusion is thus a challenging imaging frontier, requiring very high spatial and temporal resolution. Overcoming this methodological barrier is key to understanding the precise spatial patterning of the extracellular factors that regulate immune function. To address this, we have developed a high-speed light microscopy system capable of millisecond sampling in tissue samples and submillisecond sampling in controlled samples to characterize molecular diffusion in a range of complex microenvironments. We demonstrate that this method outperforms competing tools for determining molecular mobility of fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) for evaluation of diffusion. We then apply this...
2020
Oncogenic protein Myc serves as a transcription factor to control cell metabolisms. Myc dimerizes via leucine zipper with its associated partner protein Max to form a heterodimer structure, which then binds target DNA sequences to regulate gene transcription. The regulation depends on by Myc-Max binding to DNA and searching for target sequences via diffusional motions along DNA. Here, we conduct structure-based molecular dynamics (MD) simulations to investigate the diffusion dynamics of the Myc-Max heterodimer along DNA. We found that the heterodimer protein slides on the DNA in a rotation-uncoupled manner in coarse-grained simulations, as its two helical DNA binding basic regions (BRs) alternate between open and closed conformations via inchworm stepping motions. In such motions, the two BRs of the heterodimer step across the DNA strand one by one, with step sizes up about half of a DNA helical pitch length. Atomic MD simulations of the Myc-Max heterodimer in complex with DNA have ...
The Journal of chemical physics, 2022
We introduce a reaction-path statistical mechanics formalism based on the principle of large deviations to quantify the kinetics of single-molecule enzymatic reaction processes under the Michaelis-Menten mechanism, which exemplifies an out-of-equilibrium process in the living system. Our theoretical approach begins with the principle of equal a priori probabilities and defines the reaction path entropy to construct a new nonequilibrium ensemble as a collection of possible chemical reaction paths. As a result, we evaluate a variety of path-based partition functions and free energies by using the formalism of statistical mechanics. They allow us to calculate the timescales of a given enzymatic reaction, even in the absence of an explicit boundary condition that is necessary for the equilibrium ensemble. We also consider the large deviation theory under a closed-boundary condition of the fixed observation time to quantify the enzyme-substrate unbinding rates. The result demonstrates th...
Nature Chemical Biology, 2005
Kinesin-1 is a twin-headed molecular motor that moves along microtubules in 8-nm steps, using a walking action in which the two heads interact alternately with the microtubule 1-4. Constructs with only one head can also produce impulses of force and motion 5-7 , indicating that the walking action is an amplification strategy that leverages an underlying forcegenerating event. Recent work suggests that directional force is produced either by directionally biased selection of microtubule binding sites 8,9 or by a conformational change subsequent to the binding event 10-12. We report here that surface-attached rat kinesin-1 monomers drive counterclockwise rotation of sliding microtubules around their axes, and that by manipulating the assay geometry, we could reduce or block the torsional motion with negligible effects on the axial motion. We can account for this behavior on the simple assumption that kinesin heads tend to bind to the closest available tubulin heterodimer in the lattice, but only in the case where an additional biasing process is present that shifts the start position for diffusion-to-capture toward the microtubule plus end by B1 nm.
Proceedings of the National Academy of Sciences, 2008
Each step of the kinesin motor involves a force-generating molecular rearrangement. Although significant progress has been made in elucidating the broad features of the kinesin mechanochemical cycle, molecular details of the force generation mechanism remain a mystery. Recent molecular dynamics simulations have suggested a mechanism in which the forward drive is produced when the N-terminal cover strand forms a β-sheet with the neck linker to yield the cover-neck bundle . We tested this proposal by comparing optical trapping motility measurements of cover strand mutants with the wild-type. Motility data, as well as kinetic analyses, revealed impairment of the force-generating capacity accompanied by a greater load dependence in the mechanochemical cycle. In particular, a mutant with the cover strand deleted functioned only marginally, despite the fact that the cover strand, the N-terminal “dangling end,” unlike the neck linker and nucleotide-binding pocket, is not involved with any ...
Journal of Biological Chemistry, 2005
The pathway of ATP hydrolysis by rat kinesin was established by pre-steady-state kinetic methods. A 406-residue long N-terminal fragment was shown by sedimentation equilibrium analysis to form a dimer with a K d of 46 nM. The pathway of ATP hydrolysis follows the Gilbert-Johnson pathway determined previously for a similarsized N-terminal fragment of Drosophila conventional kinesin. However, the rates of ADP release were at least 3-fold faster, and ATP hydrolysis was ϳ5-fold faster. Paralleling our previous mechanistic data, these results support an alternating site ATPase pathway, including a captive head state as an intermediate in the kinesin ATPase cycle. The kinetic data presented in this report once again point to the importance of the captive head state and argue against a pathway that short-circuits this key intermediate. In addition, several unique aspects of the rat kinesin kinetics reveal new aspects of the ATPase-coupling mechanism. These studies provide a baseline set of kinetic parameters against which future studies of rat kinesin mutants may be evaluated and directly correlated with the structure of the dimeric kinesin.
Bioengineering, 2017
The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na + , Ca 2+ , K + channels). The membrane's biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM), vascular endothelial (VE)-cadherin, epithelial (E)-cadherin, integrin) embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.
Lab on a Chip, 2018
Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices.
The Journal of chemical physics, 2018
In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation ...
Proceedings of the National Academy of Sciences, 2010
Cilia are microtubule-based protrusions of the plasma membrane found on most eukaryotic cells. Their assembly is mediated through the conserved intraflagellar transport mechanism. One class of motor proteins involved in intraflagellar transport, kinesin-2, is unique among kinesin motors in that some of its members are composed of two distinct polypeptides. However, the biological reason for heterodimerization has remained elusive. Here we provide several interdependent reasons for the heterodimerization of the kinesin-2 motor KLP11/KLP20 of Caenorhabditis elegans cilia. One motor domain is unprocessive as a homodimer, but heterodimerization with a processive partner generates processivity. The “unprocessive” subunit is kept in this partnership as it mediates an asymmetric autoregulation of the motor activity. Finally, heterodimerization is necessary to bind KAP1, the in vivo link between motor and cargo.
Biology of the Cell, 2012
Active transport along the microtubule lattice is a complex process that involves both the Kinesin and Dynein superfamily of motors. Transportation requires sophisticated regulation much of which occurs through the motor's tail domain. However, a significant portion of this regulation also occurs through structural changes that arise in the motor and the microtubule upon binding. The most obvious structural change being the manifestation of asymmetry. To a first approximation in solution, kinesin dimers exhibit twofold symmetry, and microtubules, helical symmetry. The higher symmetries of both the kinesin dimers and microtubule lattice are lost on formation of the kinesin-microtubule complex. Loss of symmetry has functional consequences such as an asymmetric handover hand mechanism in plus-end directed kinesins, asymmetric microtubule binding in the Kinesin-14 family, spatially biased stepping in dynein, and cooperative binding of additional motors to the microtubule. This review focuses on how the consequences of asymmetry affect regulation of motor heads within a dimer, dimers within an ensemble of motors, and suggests how these asymmetries may affect regulation of active transport within the cell.
Journal of Biological Chemistry, 2012
Background: Kar3Vik1 binds side-by-side microtubule protofilaments and utilizes a minus-end-directed powerstroke. Results: Microtubule collision occurs through Vik1 followed by Kar3 binding and ADP release, which destabilize Vik1 and generate the intermediate poised for ATP binding. Conclusion: The transient Kar3Vik1 two-head-bound state intermediate was identified. Significance: This study provides new insights into force generation by kinesin-14 motors. Kar3, a Saccharomyces cerevisiae microtubule minus-end-directed kinesin-14, dimerizes with either Vik1 or Cik1. The C-terminal globular domain of Vik1 exhibits the structure of a kinesin motor domain and binds microtubules independently of Kar3 but lacks a nucleotide binding site. The only known function of Kar3Vik1 is to cross-link parallel microtubules at the spindle poles during mitosis. In contrast, Kar3Cik1 depolymerizes microtubules during mating but cross-links antiparallel microtubules in the spindle overlap zone during mitosis. A recent study showed that Kar3Vik1 binds across adjacent microtubule protofilaments and uses a minus-end-directed powerstroke to drive ATP-dependent motility. The presteady-state experiments presented here extend this study and establish an ATPase model for the powerstroke mechanism. The results incorporated into the model indicate that Kar3Vik1 collides with the microtubule at 2.4 M ؊1 s ؊1 through Vik1, promoting microtubule binding by Kar3 followed by ADP release at 14 s ؊1. The tight binding of Kar3 to the microtubule destabilizes the Vik1 interaction with the microtubule, positioning Kar3Vik1 for the start of the powerstroke. Rapid ATP binding to Kar3 is associated with rotation of the coiled-coil stalk, and the postpowerstroke ATP hydrolysis at 26 s ؊1 is independent of Vik1, providing further evidence that Vik1 rotates with the coiled coil during the powerstroke. Detachment of Kar3Vik1 from the microtubule at 6 s ؊1 completes the cycle and allows the motor to return to its initial conformation. The results also reveal key differences in the ATPase cycles of Kar3Vik1 and Kar3Cik1, supporting the fact that these two motors have distinctive biological functions. Kinesin-14 represents a subfamily of kinesins that are nonprocessive, promote microtubule (MT) 2 minus-end-directed force generation, and contain C-terminal motor domains that are dimerized through an N-terminal coiled coil (1-7). Unlike the well known N-terminal motor domain kinesins that use an asymmetric handover hand mechanism for MT plus-end-directed processive stepping (8-11), kinesin-14s use an MT minus-end-directed rotation or bending of the coiled-coil stalk to generate force (12-14). This rotation coupled to ATP turnover is designated the powerstroke and is used to slide one MT relative to another (15-19). During mitosis, kinesin-14s are known to cross-link parallel MTs at the spindle poles but crosslink antiparallel interpolar MTs in the spindle overlap zone (20-24). Furthermore, at the spindle poles and the spindle overlap zone, MT plus-end-directed kinesin-5 is present and provides an outward force to counterbalance the inward force of kinesin-14 to achieve spindle integrity yet allow MT dynamics and other motor and protein interactions required for chromosome segregation (25-28). Saccharomyces cerevisiae kinesin-14 Kar3 is an intriguing model to study kinesin-14 mechanochemistry and head-head communication because Kar3 forms heterodimers with either Cik1 or Vik1, both of which lack a nucleotide binding site, and Kar3Cik1 and Kar3Vik1 have different physiological roles during the yeast life cycle (21, 22, 29-32). Moreover, the C-terminal domain of Vik1 exhibits the structural fold of a kinesin motor domain, and it can bind MTs with high affinity. However, the absence of a nucleotide binding site indicates that nucleotide cannot modulate the interactions of Vik1 with the MT lattice (33). Recent studies using equilibrium binding, cryo-EM, x-ray crystallography, and site-directed cross-links at the base of the coiled coil with analysis by in vitro motility assays clearly demonstrated that both Kar3 and Vik1 interact with the MT for motility (14). Furthermore, an unprecedented mode of MT binding was revealed for Kar3Vik1 by high resolution unidirectional metal shadowing, which strongly emphasizes the surface features when viewed by EM. The images of the shadowed MT⅐Kar3Vik1 complexes in the presence of ADP, used to mimic the beginning of the cycle when Kar3Vik1 collides with the MT, revealed that Kar3 and Vik1 bound side-by-side MT protofilaments rather than binding along a single protofilament in a head-to-tail fashion (14). Because the complexes were formed with ADP, the results suggested that the initial event of
Journal of Cell Biology, 2012
Kinesin-14 motors generate microtubule minus-end–directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterodimer with either Vik1 or Cik1. Vik1 contains a motor homology domain that retains microtubule binding properties but lacks a nucleotide binding site. In this case, both heads are implicated in motility. Here, we show through structural determination of a C-terminal heterodimeric Kar3Vik1, electron microscopy, equilibrium binding, and motility that at the start of the cycle, Kar3Vik1 binds to or occludes two αβ-tubulin subunits on adjacent protofilaments. The cycle begins as Vik1 collides with the microtubule followed by Kar3 microtubule association and ADP release, thereby destabilizing the Vik1–microtubule interaction and positioning the motor for the start of the powerstroke. The result...
The Journal of biological chemistry, 2016
Kinesin-1, 2, 5, and 7 generate processive hand-over-hand 8-nm steps to transport intracellular cargoes toward the microtubule plus end. This processive motility requires gating mechanisms to coordinate the mechanochemical cycles of the two motor heads to sustain the processive run. A key structural element believed to regulate the degree of processivity is the neck-linker, a short peptide of 12-18 residues, which connects the motor domain to its coiled-coil stalk. While a shorter neck-linker has been correlated with longer run lengths, the structural data to support this hypothesis have been lacking. To test this hypothesis, seven kinesin structures were determined by X-ray crystallography. Each included the neck-linker motif, followed by helix α7 which constitutes the start of the coiled-coil stalk. In the majority of the structures, the neck-linker length differed from predictions because helix α7, which initiates the coiled-coil, started earlier in the sequence than predicted. A...
Journal of Biological Chemistry, 2018
Scientific Reports, 2021
We report a new method to optically manipulate a single dielectric particle along closed-loop polygonal trajectories by crossing a suite of all-fiber Bessel-like beams within a single water droplet. Exploiting optical radiation pressure, this method demonstrates the circulation of a single polystyrene bead in both a triangular and a rectangle geometry enabling the trapped particle to undergo multiple circulations successfully. The crossing of the Bessel-like beams creates polygonal corners where the trapped particles successfully make abrupt turns with acute angles, which is a novel capability in microfluidics. This offers an optofluidic paradigm for particle transport overcoming turbulences in conventional microfluidic chips.
Molecular Biology of the Cell, 2017
Direct measurement of the strength of microtubule attachment to yeast centrosomes ABSTRACT Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubulecentrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB-microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB-microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB-microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs. INTRODUCTION The centrosome is the microtubule-organizing center of the cell, responsible for nucleation of microtubules and organization of the bipolar mitotic spindle. Centrosomes serve as mechanical hubs, subjected to force from interpolar microtubules (Dumont and
Scientific Reports, 2019
A microfluidic laminar flow cell (LFC) forms an indispensable component in single-molecule experiments, enabling different substances to be delivered directly to the point under observation and thereby tightly controlling the biochemical environment immediately surrounding single molecules. Despite substantial progress in the production of such components, the process remains relatively inefficient, inaccurate and time-consuming. Here we address challenges and limitations in the routines, materials and the designs that have been commonly employed in the field, and introduce a new generation of LFCs designed for single-molecule experiments and assembled using additive manufacturing. We present single- and multi-channel, as well as reservoir-based LFCs produced by 3D printing to perform single-molecule experiments. Using these flow cells along with optical tweezers, we show compatibility with single-molecule experiments including the isolation and manipulation of single DNA molecules ...
The EMBO Journal, 2006
Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single quantum dot-labelled kinesins on crowded microtubules under steady-state conditions and to measure the degree of crowding on a microtubule at steady-state. We find that the runs of kinesins are little affected by high kinesin densities on a microtubule. However, the presence of high densities of a mutant kinesin that is not able to step efficiently reduces the average speed of wild-type kinesin, while hardly changing its processivity. This indicates that kinesin waits in a strongly bound state on the microtubule when encountering an obstacle until the obstacle unbinds and frees the binding site for kinesin's next step. A simple kinetic model can explain quantitatively the behaviour of kinesin under both crowding conditions.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.