Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009, Molecular neurobiology
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization ...
Proceedings of the National Academy of Sciences of the United States of America, 1996
Physical Review E, 2009
Many cellular processes require a polarization axis which generally initially emerges as an inhomogeneous distribution of molecular markers in the cell. We present a simple analytical model of a general mechanism of cell polarization taking into account the positive feedback due to the coupled dynamics of molecular markers and cytoskeleton filaments. We find that the geometry of the organization of cytoskeleton filaments, nucleated on the membrane ͑e.g., cortical actin͒ or from a center in the cytoplasm ͑e.g., microtubule asters͒, dictates whether the system is capable of spontaneous polarization or polarizes only in response to external asymmetric signals. Our model also captures the main features of recent experiments of cell polarization in two considerably different biological systems, namely, mating budding yeast and neuron growth cones.
The Journal of General Physiology, 2013
Current Opinion in Cell Biology, 2012
In a biological sense, polarity refers to the extremity of the main axis of an organelle, cell, or organism. In neurons, morphological polarity begins with the appearance of the first neurite from the cell body. In multipolar neurons, a second phase of polarization occurs when a single neurite initiates a phase of rapid growth to become the neuron's axon, while the others later differentiate as dendrites. Finally, during a third phase, axons and dendrites develop an elaborate architecture, acquiring special morphological and molecular features that commit them to their final identities. Mechanistically, each phase must be preceded by spatial restriction of growth activity. We will review recent work on the mechanisms underlying the polarized growth of neurons.
Frontiers in Cellular Neuroscience, 2016
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule-and/or actinbased mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
BMC systems biology, 2011
Background: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. Results: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration.
2014
Final morphological polarization of neurons, with the development of a distinct axon and several dendrites, is preceded by phases where they have a non-polarized architecture. The earliest of these phases is that of the round neuron arising from the last mitosis. A second non-polarized stage corresponds to the bipolar neuron, with two morphologically identical neurites. Both phases have their distinctive relevance in the establishment of neuronal polarity. During the round cell stage, a decision is made as to where from the cell periphery a first neurite will form, thus creating the first sign of asymmetry. At the bipolar stage a decision is made as to which of the two neurites becomes the axon in neurons polarizing in vitro, and the leading edge in neurons in situ. In this study, we analysed cytoskeletal and membrane dynamics in cells at these two 'prepolarity' stages. By means of time lapse imaging in dissociated hippocampal neurons and ex vivo cortical slices, we show that both stages are characterized by polarized intracellular arrangements. However, the stages have distinct temporal hierarchies: polarized actin dynamics marks the site of first polarization in round cells, whereas polarized membrane dynamics precedes asymmetric growth in the bipolar stage.
Proceedings of the National Academy of Sciences, 2009
Neuronal migration is essential for proper development of the cerebral cortex. As a first step, a postmitotic cell extends its leading process, presumably by adding new membrane at the growing tip, which would enable directed locomotion. The goal of the present study was to determine if biosynthetic exocytic pathway is polarized in migrating cells and whether polarized exocytosis promotes directed cell migration. A promising candidate for controlling the spatial sites of vesicle tethering and fusion at the plasma membrane is a protein complex called the exocyst. We found that cell migration in a wound assay, as well as cortical neuronal migration during embryonic development was impaired when the exocyst was disturbed. By combining TIRF microscopy and a stochastic model of exocytosis, we found that vesicle exocytosis is preferentially distributed close to the leading edge of polarized cells, that the exocytic process is organized into hotspots, and that the polarized delivery of ves...
Advances in Experimental Medicine and Biology, 2013
Proper brain development requires the orchestrated migration of neurons from their place of birth to their final positioning, where they will form appropriate connections with their target cells. These events require coordinated activity of multiple elements of the cytoskeleton, in which the MARK/Par-1 polarity kinase plays an important role. Here, the various roles and modes of regulation of MARK/Par-1 are reviewed. MARK/Par-1 participates in axon formation in primary hippocampal neurons. Balanced levels of MARK/Par-1 are required for proper radial migration, as well as for migration in the rostral migratory stream. Normal neuronal migration requires at least two of MARK/Par-1 substrates, DCX and tau. Overall, the positioning of MARK/Par-1 at the crosstalk of regulating cytoskeletal dynamics allows its participation in neuronal polarity decisions.
Current Opinion in Neurobiology, 1992
The axonal and somatodendritic domains of neurons differ in their cytoskeletal and membrane composition, complement of organelles, and capacity for macromolecular synthesis. Recently there has been progress in elucidating the cellular mechanisms that underlie the establishment and maintenance of neuronal polarity, including microtubule organization and the sorting, transport, and anchoring of membrane proteins.
Nature, 2005
Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis 1,2 . It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization 3 , or is extrinsic and cue-mediated, as in migratory cells 4 . Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event.
2021
ABSTRACTNeuronal polarization and axon specification depend on extracellular cues, intracellular signaling, cytoskeletal rearrangements and polarized transport, but the interplay between these processes has remained unresolved. The polarized transport of kinesin-1 into a specific neurite is an early marker for axon identity, but the mechanisms that govern neurite selection and polarized transport are unknown. We show that extracellular elasticity gradients control polarized transport and axon specification, mediated by Rho-GTPases whose local activation is necessary and sufficient for polarized transport. Selective Kinesin-1 accumulation furthermore depends on differences in microtubule network mobility between neurites and local control over this mobility is necessary and sufficient for proper polarization, as shown using optogenetic anchoring of microtubules. Together, these results explain how mechanical cues can instruct polarized transport and axon specification.
Background Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. Results The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. Conclusions We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.
Current Biology, 2008
Nature Communications, 2013
Cell polarity is regulated by evolutionarily conserved polarity factors whose precise higherorder organization at the cell cortex is largely unknown. Here we image frontally the cortex of live fission yeast cells using time-lapse and super-resolution microscopy. Interestingly, we find that polarity factors are organized in discrete cortical clusters resolvable to B50-100 nm in size, which can form and become cortically enriched by oligomerization. We show that forced co-localization of the polarity factors Tea1 and Tea3 results in polarity defects, suggesting that the maintenance of both factors in distinct clusters is required for polarity. However, during mitosis, their co-localization increases, and Tea3 helps to retain the cortical localization of the Tea1 growth landmark in preparation for growth reactivation following mitosis. Thus, regulated spatial segregation of polarity factor clusters provides a means to spatio-temporally control cell polarity at the cell cortex. We observe similar clusters in Saccharomyces cerevisiae and Caenorhabditis elegans cells, indicating this could be a universal regulatory feature.
Journal of Neuroscience, 2008
Radial neuronal migration is key in structuring the layered cortex. Here we studied the role of MARK2/Par-1 in this process. The dual name stands for the MAP/microtubule affinity-regulating kinase 2 (MARK2) and the known polarity kinase 1 (Par-1). Reduced MARK2 levels using in utero electroporation resulted in multipolar neurons stalled at the intermediate zone border. Reintroduction of the wild-type kinase postmitotically improved neuronal migration. Our results indicated that reduction in MARK2 affected centrosomal dynamics in migrating neurons of the cerebral cortex. Increased MARK2 has been shown to destabilize microtubules, and here we show for the first time that reduced MARK2 stabilized microtubules in primary cultured neurons. Kinase-independent activity permitted multipolar-to-bipolar transition but did not restore proper migration. Increased MARK2 levels resulted in a different phenotype, which is loss of neuronal polarity. MARK2 kinase activity reduction hindered migration in the developing brain, which was rescued by increasing kinase activity. Our results stress the necessity of maintaining dynamic microtubules for proper neuronal migration. Furthermore, the exact requirements for MARK2 and its kinase activity vary during the course of neuronal migration. Collectively, our results stress the requirements for the different roles of MARK2 during neuronal migration.
Journal of Neuroscience, 2011
Mammalian neocortex has a laminated structure that develops in a birthdate dependent "inside-out" pattern. This layered structure is established by neuronal migration with sequential changes of the migratory mode regulated by several signaling cascades, including the Reelin-Disabled homolog 1 (Dab1) pathway. Although the importance of "locomotion," the major migratory mode, has been well established, the physiological significance of the mode change from locomotion to "terminal translocation," the final migratory mode, is unknown. In this study, we found that the outermost region of the mouse cortical plate has several histologically distinct features and named this region the primitive cortical zone (PCZ). Time-lapse analyses revealed that "locomoting" neurons paused transiently just beneath the PCZ before migrating into it by "terminal translocation." Furthermore, whereas Dab1-knockdown (KD) neurons could reach beneath the PCZ, they failed to enter the PCZ, suggesting that the Dab1-dependent terminal translocation is necessary for entry of the neurons into the PCZ. Importantly, sequential in utero electroporation experiments directly revealed that failure of the Dab1dependent terminal translocation resulted in disruption of the inside-out alignment within the PCZ and that this disrupted pattern was still preserved in the mature cortex. Conversely, Dab1-KD locomoting neurons could pass by both wild-type and Dab1-KD predecessors beneath the PCZ. Our data indicate that the PCZ is a unique environment, passage of neurons through which involves molecularly and behaviorally different migratory mechanisms, and that the migratory mode change from locomotion to terminal translocation just beneath the PCZ is critical for the Dab1-dependent inside-out lamination in the mature cortex.
2005
Based on experimental observations it is known that various biological cells exhibit a persistent random walk during migration on flat substrates. The persistent random walk is characterized by 'stop-and-go' movements : unidirectional motions over distances of the order of several cell diameter are separated by localized short time erratic movements. Using computer simulations the reasons for this phenomena had been unveiled and shown to be attributed to two antagonistic nucleation processes during the polymerization of the cell's actin cytoskeleton : the (ordinary) spontaneous nucleation and the dendritic nucleation processes. Whereas spontaneous nucleations generate actin filaments growing in different directions and hence create motions in random directions, dendritic nucleations provide a unidirectional growth. Since dendritic growth exhibits stochastic fluctuations, spontaneous nucleation may eventually compete or even dominate, which results in a reorientation of filament growth and hence a new direction of cell motion. The event of reorientation takes place at instants of vanishing polarity of the actin skeleton.
Nature Cell Biology, 2003
The formation and maintenance of polarized distributions of membrane proteins in the cell membrane are key to the function of polarized cells. In polarized neurons, various membrane proteins are localized to the somatodendritic domain or the axon. Neurons control polarized delivery of membrane proteins to each domain, and in addition, they must also block diffusional mixing of proteins between these domains. However, the presence of a diffusion barrier in the cell membrane of the axonal initial segment (IS), which separates these two domains, has been controversial: it is difficult to conceive barrier mechanisms by which an even diffusion of phospholipids could be blocked. Here, by observing the dynamics of individual phospholipid molecules in the plasma membrane of developing hippocampal neurons in culture, we found that their diffusion was blocked in the IS membrane. We also found that the diffusion barrier is formed in neurons 7-10 days after birth through the accumulation of various transmembrane proteins that are anchored to the dense actin-based membrane skeleton meshes being formed under the IS membrane. We conclude that various membrane proteins anchored to the dense membrane skeleton function as rows of pickets, which even stop the overall diffusion of phospholipids, and may represent a universal mechanism for formation of diffusion barriers in the cell membrane.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.