Academia.eduAcademia.edu

FEATURE EXTRACTION AND RECOGNITION ON TRAFFIC SIGN IMAGES

It is vital that the traffic signs used to ensure the order of the traffic are perceived by the drivers. Traffic signs have international standards that allow the driver to learn about the road and the environment while driving. Traffic sign recognition systems have recently started to be used in vehicles in order to improve traffic safety. Machine learning methods are used in the field of image recognition. Deep learning methods increase the classification success by extracting the hidden and interesting features in the image. Images contain many features and this situation can affect success in classification problems. It can also reveal the need for high-capacity hardware. In order to solve these problems, convolutional neural networks can be used to extract meaningful features from the image. In this study, we created a dataset containing 1500 images of 14 different traffic signs that are frequently used on Turkey highways. The features of the images in this dataset were extracted using convolutional neural networks from deep learning architectures. The 1000 features obtained were classified using the Random Forest method from machine learning algorithms. 93.7% success was achieved as a result of this classification process.