Academia.eduAcademia.edu

Titre : Title : Graphlet characteristics in directed networks Auteurs

2018

Abstract

Graphlet analysis is part of network theory that does not depend on the choice of the network null model and can provide comprehensive description of the local network structure. Here, we propose a signature vector for every vertex in the network and then the graphlet correlation matrix of the network. This analysis Moreover, by considering only those correlations (or anti correlations) in the correlation matrix that > <- The complexity of systems is frequently the result of non-trivial local connectivity and interaction of its constituents parts. A number of network structural characteristics have recently been the subject of particularly intense research, including degree distributions 1 , community structure 2,3 , and various measures of vertex centrality 4,5 , to mention only a few. Vertices may have attributes associated with them; for example, properties of proteins in protein-protein interaction networks 6 , users' social network profiles 7 , or authors' publication histories in co-authorship networks 8 . Two approaches that focus on the local connectivity of subgraphs within a network are Motifs and Graphlets. Motifs are defined as sub-graphs that repeat frequently in the networks i.e they repeat at frequency higher than in the random graphs 9,10 , and they depend on the choice of the network's null model. In contrast, graphlets are induced sub-graphs of a network that appear at any frequency and hence are independent of a null model. They have been introduced recently 11 and they have found numerous applications as building blocks of network analysis in various disciplines ranging from social science to biology . In social science, graphlet analysis (known as sub-graph census) is widely adopted in sociometric studies 12 . Much of the work in this vein focused on analyzing triadic tendencies as important structural features of social networks (e.g., transitivity or triadic closure) as well as analyzing triadic configurations as the basis for various social network theories (e.g., social balance, strength of weak ties, stability of ties, or trust ). In biology graphlets were used to infer protein structure 17 , to compare biological networks , and to characterize the relationship between disease and structure of networks 18 . Many of the real-world networks are directed, but until now no method has been proposed based on graphlets that can provide information about local structure of directed networks. Here, we offer a graphlet-based approach for analysis of the local structure of a directed network. In the method proposed in this manuscript, we compute for each vertex, a vector of structural features, called signature vector, based on the number of graphlets associated with the vertex, and for the network its graphlet correlation matrix, measuring graphlet dependencies which reveal unknown organizational principles of the network. We applied the technique to brain effective networks of 40 healthy subjects, and we found that many of the subjects share similar patterns in their network's local structure. In brain networks a node is associated with different types of elements, depending on the level of interest in the brain, and an edge represents the connection or interaction between two elements . If the brain is studied on