Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013
…
310 pages
1 file
max. 2000 char) The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the fourth edition of the report and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Ener...
2012
A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment ...
Proc. of …, 2007
During the summer of 2006, two remote sensing instruments, a LiDAR (Light Detection and Ranging) and a SoDAR (Sound Detection and Ranging) were installed for a wind assessment campaign on the transformer/platform of Horns Rev, the world's largest offshore wind farm, located at the West coast of Denmark. This article presents the first set of results of the evaluation of both sensing instruments under this offshore environment by comparison with data from different masts surrounding the wind farm. LiDAR and SoDAR observations of mean wind speed agree for the first levels but the SoDAR data is few for higher levels due to background sound problems.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008
Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind turbines where meteorological masts do not enable observations across the rotor-plane, i.e., at 100 to 200 m above ground level. Light detection and ranging (LiDAR) and sound detection and ranging (SoDAR) offer capabilities to observe winds at high heights. Airborne synthetic aperture radar (SAR) used for ocean wind mapping provides the basis for detailed offshore wind farm wake studies and is highly useful for development of new wind retrieval algorithms from C-, L-, and X-band data. Satellite observations from SAR and scatterometer are used in offshore wind resource estimation. SAR has the advantage of covering the coastal zone where most offshore wind farms are located. The number of samples from scatterometer is relatively high and the scatterometer-based estimate on wind resources appears to agree well with coastal offshore meteorological observations in the North Sea. Finally, passive microwave ocean winds have been used to index the potential offshore wind power production, and the results compare well with observed power production (mainly land-based) covering nearly two decades for the Danish area.
2012
This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. If successful, the planes could be used in such diverse areas as the investigation of turbulence structure in wakes, for work on the comparison between line measurements and fixed measurement relating to Taylor's Hypothesis, for more general meteorology like the investigation of the air-sea boundary, the top of the boundary layer or the night-time stability structure. Additional services for the wind power industry could include inspection of wings or other difficult to access parts. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities.
2010
This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. While the wake structure behind single wind turbines onshore is fairly well understood, there are different problems offshore, thought to be due mainly to the low turbulence. Good measurements of the wake and wake structure are not easy to come by, as the use of a met mast is static and expensive, while the use of remote sensing instruments either needs significant access to the turbine to mount an instrument, or is complicated to use on a ship due to the ship's own movement. In any case, a good LIDAR or SODAR will cost many tens of thousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12 MW class, with tip heights of over 200 m. Very few measurement masts exist to verify our knowledge of atmospheric physics - all that is known is that the boundary layer description we used so far is not valid any more. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current high masts or to build a network of very high ‘masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of high masts, UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø will build a lighter-than-air kite with a long tether, Bergen University flies a derivative of the Funjet, a pusher airplane below 1 kg total weight, Mavionics or TU Braunschweig flies the Carolo, a 2m wide two prop model with a pitot tube on the nose, and Aalborg University will use a helicopter for their part. All those platforms will be flown during one week at the Danish national test station for large wind turbines at Høvsøre. The site is strongly instrumented, with 6 masts reaching up to 167m. The comparison of wind speed measurements from planes and fixed masts should give an indication of the accuracy of the measured wind field. A workshop is planned as preparation, where everyone with an interest in the program can give input.
2000
Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed: wind profiles and shear, turbulence and gust, and extreme winds.
Wind energy is becoming popular source of renewable energy based power generation for electricity in windy areas. The wind resource assessment is essential and necessary step for appropriate wind turbine selection. Any wind energy development project has mainly three important aspects: quantification of available wind resource, site geographical and geological conditions and wind turbine power curve. In this paper initial two aspects are discussed along with the application of remote sensing techniques. The remote sensing application is important due increasing hub height of modern wind turbines in on shore and off shore sites, mountainous and complex terrain.
2011
max. 2000 char.): An overview of wind related metrology research made at Riso DTU over the period of the UPWIND project is given. A main part of the overview is devoted to development of the Lidar technology with several sub-chapters considering different topics of the research. Technical problems are not rare for this new technology, and testing against a traditional met mast have shown to be efficient for gaining confidence with the ground based Lidar technology and for trust in accuracy of measurements. In principle, Lidar measurements could be traceable through the fundamental measurement principles, but at this stage of development it is not found feasible. Instead, traceability is secured through comparison with met masts that are traceable through wind tunnel calibrations of cup anemometers. The ground based Lidar measurement principle works almost acceptable in flat terrain. In complex terrain and close to woods the measurement volume is disturbed because the flow is no long...
Atmospheric Measurement Techniques
The paper presents the measurement strategy and data set collected during the COTUR (COherence of TURbulence with lidars) campaign. This field experiment took place from February 2019 to April 2020 on the southwestern coast of Norway. The coherence quantifies the spatial correlation of eddies and is little known in the marine atmospheric boundary layer. The study was motivated by the need to better characterize the lateral coherence, which partly governs the dynamic wind load on multi-megawatt offshore wind turbines. During the COTUR campaign, the coherence was studied using land-based remote sensing technology. The instrument setup consisted of three long-range scanning Doppler wind lidars, one Doppler wind lidar profiler and one passive microwave radiometer. Both the WindScanner software and LidarPlanner software were used jointly to simultaneously orient the three scanner heads into the mean wind direction, which was provided by the lidar wind profiler. The radiometer instrument complemented these measurements by providing temperature and humidity profiles in the atmospheric boundary layer. The scanning beams were pointed slightly upwards to record turbulence characteristics both within and above the surface layer, providing further insight on the applicability of surface-layer scaling to model the turbulent wind load on offshore wind turbines. The preliminary results show limited variations of the lateral coherence with the scanning distance. A slight increase in the identified Davenport decay coefficient with the height is partly due to the limited pointing accuracy of the instruments. These results underline the importance of achieving pointing errors under 0.1 • to study properly the lateral coherence of turbulence at scanning distances of several kilometres.
Wind Energy, 1998
Wind power meteorology has evolved as an applied science ®rmly founded on boundary layer meteorology but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment and short-term prediction of the wind resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed: wind pro®les and shear, turbulence and gust, and extreme winds. * c 1998 John Wiley & Sons, Ltd.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal of Physics: Conference Series, 2014
International Journal of Latest Research in Engineering and Technology, 2017
Zenodo (CERN European Organization for Nuclear Research), 2022
Wind Energy, 1998
Data Acquisition, 2010
IOP Conference Series: Earth and Environmental Science, 2008
Remote Sensing of Environment, 2015