Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule. Apart from this fundamental property, Lie systems enjoy many other geometrical features and they appear in multiple branches of Mathematics and Physics, which strongly motivates their study. These facts, together with the authors' recent findings in the theory of Lie systems, led to the redaction of this essay, which aims to describe such new achievements within a self-contained guide to the whole theory of Lie systems, their generalisations, and applications.
Acta Applicandae Mathematicae, 2002
The characterization of systems of differential equations admitting a superposition function allowing us to write the general solution in terms of any fundamental set of particular solutions is discussed. These systems are shown to be related with equations on a Lie group and with some connections in fiber bundles. We develop two methods for dealing with such systems: the generalized Wei–Norman method and the reduction method, which are very useful when particular solutions of the original problem are known. The theory is illustrated with some applications in both classical and quantum mechanics.
Journal of Physics A: Mathematical and Theoretical, 2010
We analyze families of non-autonomous systems of first-order ordinary differential equations admitting a common time-dependent superposition rule, i.e., a timedependent map expressing any solution of each of these systems in terms of a generic set of particular solutions of the system and some constants. We next study relations of these families, called Lie families, with the theory of Lie and quasi-Lie systems and apply our theory to provide common time-dependent superposition rules for certain Lie families.
Arxiv preprint arXiv:0901.4478, 2009
In this paper we give the global conditions for an ordinary differential equation to admit a superposition law of solutions in the classical sense. This completes the well-known Lie superposition theorem. We introduce rigorous notions of pretransitive Lie group action and Lie-Vessiot ...
International Journal of Geometric Methods in Modern Physics, 2013
This work concerns the definition and analysis of a new class of Lie systems on Poisson manifolds enjoying rich geometric features: the Lie–Hamilton systems. We devise methods to study their superposition rules, time independent constants of motion and Lie symmetries, linearizability conditions, etc. Our results are illustrated by examples of physical and mathematical interest.
Journal of Physics A: Mathematical and Theoretical, 2013
A Lie system is a nonautonomous system of first-order differential equations possessing a superposition rule, i.e. a map expressing its general solution in terms of a generic finite family of particular solutions and some constants. Lie-Hamilton systems form a subclass of Lie systems whose dynamics is governed by a curve in a finite-dimensional real Lie algebra of functions on a Poisson manifold. It is shown that Lie-Hamilton systems are naturally endowed with a Poisson coalgebra structure. This allows us to devise methods to derive in an algebraic way their constants of motion and superposition rules. We illustrate our methods by studying Kummer-Schwarz equations, Riccati equations, Ermakov systems and Smorodinsky-Winternitz systems with time-dependent frequency.
2010
In this paper we give the global conditions for an ordinary differential equation to admit a superposition law of solutions in the classical sense. This completes the well-known Lie superposition theorem. We introduce rigorous notions of pretransitive Lie group action and Lie-Vessiot systems. We prove that an ordinary differential equation admit a superposition law if and only if its enveloping algebra is spanned by fundamental fields of a pretransitive Lie group action. We discuss the relationship of superposition laws with differential Galois theory and review the classical result of Lie. Mathematics Subject Classification 2000: 34M15, 35C05, 34M35, 34M45.
Banach Center Publications
After a quick presentation of the theory of Lie systems from a geometric perspective, recent progresses on their applications when compatible geometric structures exist will be described with a special emphasis in the particular case of admissible Kähler structures, and therefore with applications in Quantum Mechanics.
Reports on Mathematical Physics, 2007
A rigorous geometric proof of the Lie's Theorem on nonlinear superposition rules for solutions of non-autonomous ordinary differential equations is given filling in all the gaps present in the existing literature. The proof is based on an alternative but equivalent definition of a superposition rule: it is considered as a foliation with some suitable properties. The problem of uniqueness of the superposition function is solved, the key point being the codimension of the foliation constructed from the given Lie algebra of vector fields. Finally, as a more convincing argument supporting the use of this alternative definition of superposition rule, it is shown that this definition allows an immediate generalization of Lie's Theorem for the case of systems of partial differential equations.
We recall the Theorem by Lie and Scheffers concerning the characterization of systems of differential equations admitting a superposition function, i.e. those whose general solution can be written in terms of some particular solutions and constants. Each of these systems is related with a Lie algebra, specified by the own Theorem. We expose some recently developed Lie theoretic and geometric techniques, useful for treating such systems, as a reduction property and a generalization of the Wei-Norman method. We illustrate the theory with some applications, which are mainly inspired in physical problems.
Journal of Physics A: Mathematical and Theoretical, 2015
A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finitedimensional real Lie algebra of Hamiltonian vector fields with respect to a Poisson structure. We provide new algebraic/geometric techniques to easily determine the properties of such Lie algebras on the plane, e.g., their associated Poisson bivectors. We study new and known Lie-Hamilton systems on R 2 with physical, biological and mathematical applications. New results cover Cayley-Klein Riccati equations, the here defined planar diffusion Riccati systems, complex Bernoulli differential equations and projective Schrödinger equations. Constants of motion for planar Lie-Hamilton systems are explicitly obtained which, in turn, allow us to derive superposition rules through a coalgebra approach.
2011
The theory of Lie systems of differential equations has been shown to be very efficient in dealing with many problems in physics and in mathematics. The usefulness of the existence of additional geometric structures in the manifold where the Lie system is defined, for instance Poisson structures, will be analysed and the theory will be illustrated with several examples as the Smorodinsky–Winternitz oscillator and the second-order Riccati equation This work is a collaboration with: J. de Lucas (IMPAN, Warsaw) and C. Sardon (Universidad de Salamanca)
Journal of Differential Equations, 2015
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in [A. González-López, N. Kamran and P.J. Olver, Proc. London Math. Soc. 64, 339 (1992)] and we interpret their results as a local classification of Lie systems. Moreover, by determining which of these real Lie algebras consist of Hamiltonian vector fields with respect to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. In particular, the Milne-Pinney, second-order Kummer-Schwarz, complex Riccati and Buchdahl equations as well as some Lotka-Volterra and nonlinear biomathematical models are analysed from this Lie-Hamilton approach.
2003
The geometric techniques developed for dealing with Lie systems are also used in problems of control theory. Specifically, we will study some examples of control systems on Lie groups and homogeneous spaces.
2008
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Schwarz, Fritz, 1941-Alogrithmic lie theory for solving ordinary differential equations / Fritz Schwarz. p. cm. Includes bibliographical references and index. ISBN 978-1-58488-889-5 (alk. paper) 1. Differential equations-Numerical solutions. 2. Lie algebras. I. Title.
This study will explicitly demonstrate by example that an unrestricted infinite and forward recursive hierarchy of differential equations must be identified as an unclosed system of equations, despite the fact that to each unknown function in the hierarchy there exists a corresponding determined equation to which it can be bijectively mapped to. As a direct consequence, its admitted set of symmetry transformations must be identified as a weaker set of indeterminate equivalence transformations. The reason is that no unique general solution can be constructed, not even in principle. Instead, infinitely many disjoint and thus independent general solution manifolds exist. This is in clear contrast to a closed system of differential equations that only allows for a single and thus unique general solution manifold, which, by definition, covers all possible particular solutions this system can admit. Herein, different first order Riccati-ODEs serve as an example, but this analysis is not restricted to them. All conclusions drawn in this study will translate to any first order or higher order ODEs as well as to any PDEs.
Acta Applicandae Mathematicae, 1987
We study coupled systems of nonlinear wave equations from the point of view of their formal Darboux integrability. By making use of Vessiot's geometric theory of differential equations, it is possible to associate to each system of nonlinear wave equations a module of vector fields on the second-order jet bundle -the Vessiot distribution. By imposing certain conditions of the structure of the Vessiot distributions, we identify the so-called separable Vessiot distributions. By expressing the separable Vessiot distributions in a basis of singular vector fields, we show that there are, at most, 27 equivalence classes of such distributions. Of these, 14 classes are associated with Darboux integrable nonlinear systems. We take one of these Darboux integrable classes and show that it is in correspondence with the class of six-dimensional simply transitive Lie algebras. Finally, this later result is used to reduce the problem of constructing exact general solutions of the nonlinear wave equations understudy to the integration of Lie systems. These systems were first discovered by Sophus Lie as the most general class of ordinary differential equations which admit nonlinear superposition principles.
International Journal of Geometric Methods in Modern Physics, 2015
The k-symplectic structures appear in the geometric study of the partial differential equations of classical field theories. Meanwhile, we present a new application of the k-symplectic structures to investigate a certain type of systems of first-order ordinary differential equations, the k-symplectic Lie systems. In particular, we analyse the properties, e.g. the superposition rules, of a new example of k-symplectic Lie system which occurs in the analysis of diffusion equations.
2021
We comprehensively study admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras posse...
2009
The geometric theory of Lie systems is used to establish integrability conditions for several systems of differential equations, in particular some Riccati equations and Ermakov systems. Many different integrability criteria in the literature will be analysed from this new perspective, and some applications in physics will be given.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.