Academia.eduAcademia.edu

Optimal pebbling number of graphs with given minimum degree

Discrete Applied Mathematics

Abstract

Consider a distribution of pebbles on a connected graph G. A pebbling move removes two pebbles from a vertex and places one to an adjacent vertex. A vertex is reachable under a pebbling distribution if it has a pebble after the application of a sequence of pebbling moves. The optimal pebbling number πopt(G) is the smallest number of pebbles which we can distribute in such a way that each vertex is reachable. It was known that the optimal pebbling number of any connected graph is at most 4n δ+1 , where δ is the minimum degree of the graph. We strengthen this bound by showing that equality cannot be attained and that the bound is sharp. If diam(G) ≥ 3 then we further improve the bound to πopt(G) ≤ 3.75n δ+1. On the other hand, we show that a family of graphs with optimal pebbling number 8n 3(δ+1) exists.