Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2016, Frontiers in Cellular Neuroscience
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule-and/or actinbased mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
Current Opinion in Neurobiology, 1992
The axonal and somatodendritic domains of neurons differ in their cytoskeletal and membrane composition, complement of organelles, and capacity for macromolecular synthesis. Recently there has been progress in elucidating the cellular mechanisms that underlie the establishment and maintenance of neuronal polarity, including microtubule organization and the sorting, transport, and anchoring of membrane proteins.
The identities of axons and dendrites are acquired through the self-organization of distinct microtubule (MT) orientations during neuronal polarization. The axon is generally characterized by a uniform MT orientation with all plus-ends pointing outward to the neurite terminal ('plus-end-out' pattern). On the other hand, the MT orientation pattern in the dendrites depends on species: vertebrate dendrites have a mixed alignment with both plus and minus ends facing either the terminal or the cell body ('mixed' pattern), whereas invertebrate dendrites have a 'minus-end-out' pattern. However, how MT organizations are developed in the axon and the dendrites is largely unknown. To investigate the mechanism of MT organization, we developed a biophysical model of MT kinetics, consisting of polymerization/depolymerization and MT catastrophe coupled with neurite outgrowth. The model simulation showed that the MT orientation can be controlled mainly by the speed of neurite growth and the hydrolysis rate. With a low hydrolysis rate, vertebrate plus-end-out and mixed microtubule patterns emerged in fast-and slow-growing neurites, respectively. In contrast, with a high hydrolysis rate, invertebrate plus-end-out and minus-end-out microtubule patterns emerged in fast-and slowgrowing neurites, respectively. Thus, our model can provide a unified understanding of distinct microtubule organizations by simply changing the parameters.
Proceedings of the National Academy of Sciences of the United States of America, 1996
Neuron
Highlights d ER tubules localize to the axon, and ER cisternae are retained in the soma d Localization of axonal ER depends on ER-shaping proteins and the MT cytoskeleton d ER-MT crosstalk stabilizes both ER tubules and MTs in the axon d ER-MT crosstalk is critical for neuronal polarity
Journal of Neuroscience, 2016
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus-and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.
PLOS One, 2012
Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tensionmediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations.
Proceedings of the National Academy of Sciences of the United States of America, 2014
Microtubules are known to play an important role in cell polarity; however, the mechanism remains unclear. Using cells migrating persistently on micropatterned strips, we found that depolymerization of microtubules caused cells to change from persistent to oscillatory migration. Mathematical modeling in the context of a local-excitation-global-inhibition control mechanism indicated that this mechanism can account for microtubule-dependent oscillation, assuming that microtubules remove inhibitory signals from the front after a delayed generation. Experiments further supported model predictions that the period of oscillation positively correlates with cell length and that oscillation may be induced by inhibiting retrograde motors. We suggest that microtubules are required not for the generation but for the maintenance of cell polarity, by mediating the global distribution of inhibitory signals. Disassembly of microtubules induces cell oscillation by allowing inhibitory signals to accu...
Journal of Cell Biology, 2010
Current Biology, 2008
2012
Neuronal growth cones are the most sensitive among eukaryotic cells in responding to directional chemical cues. Although a dynamic microtubule cytoskeleton has been shown to be essential for growth-cone turning, the precise nature of coupling of the spatial cue with microtubule polarization is less understood. Here we present a computational model of microtubule polarization in a turning neuronal growth cone.
Current Opinion in Cell Biology, 2012
Encyclopedia of Neuroscience, 2009
Oxford Open Neuroscience
The initiation of nascent projections, or neurites, from the neuronal cell body is the first stage in the formation of axons and dendrites, and thus a critical step in the establishment of neuronal architecture and nervous system development. Neurite formation relies on the polarized remodelling of microtubules, which dynamically direct and reinforce cell shape, and provide tracks for cargo transport and force generation. Within neurons, microtubule behaviour and structure are tightly controlled by an array of regulatory factors. Although microtubule regulation in the later stages of axon development is relatively well understood, how microtubules are regulated during neurite initiation is rarely examined. Here, we discuss how factors that direct microtubule growth, remodelling, stability and positioning influence neurite formation. In addition, we consider microtubule organization by the centrosome and modulation by the actin and intermediate filament networks to provide an up-to-d...
Nature, 2005
Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis 1,2 . It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization 3 , or is extrinsic and cue-mediated, as in migratory cells 4 . Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event.
Aside from rare counterexamples (e.g. the starburst amacrine cell in retina), neurons are polarized into two compartments, dendrites and axon, which are linked at the cell body. This structural polarization carries an underlying molecular definition and maps into a general functional polarization whereby inputs are collected by the dendrites and cell body, and output is distributed via the axon. Explanations of how the polarized structure arises invariably coalesce around somatic polarity, defined by the roving location of the microtubule organizing centre, or centrosome, the Golgi apparatus, associated endosomes and the nucleus during early development. In some neurons, proper positioning of these structures can determine the sites for axon and dendrite elongation, and support processes that underlie cell migration. We briefly review these events as a basis to propose a new role for polarized arrangement of somatic organelles as a potential determinant for patterned innervation of the cell body membrane. We cite an example from preliminary studies of synaptogenesis at the calyx of Held, a large nerve terminal that selectively innervates the cell body of its postsynaptic partner, and suggest other neural systems in which polarity mechanisms may guide initial synapse formation onto the somatic surface.
Journal of Cell Science, 2005
Fucus zygotes polarise and germinate a rhizoid before their first asymmetrical division. The role of microtubules (MTs) in orienting the first division plane has been extensively studied by immunofluorescence approaches. In the present study, the re-organisation of MT arrays during the development of Fucus zygotes and embryos was followed in vivo after microinjection of fluorescent tubulin. A dynamic cortical MT array that shows dramatic reorganization during zygote polarization was detected for the first time. Randomly distributed cortical MTs were redistributed to the presumptive rhizoid site by the time of polarisation and well before rhizoid germination. The cortical MT re-organisation occurs independently of centrosome separation and nucleation. By the time of mitosis the cortical array depolymerised to cortical foci in regions from which it also reformed following mitosis, suggesting that it is nucleated from cortical sites. We confirm previous indications from immunodetection...
Neuroscience, 1993
Scientific Reports
Axonal microtubules are more stable than those in the remaining neurites, while dynamics of F-actin in axonal growth cones clearly exceed those in their dendritic counterparts. However, whether a functional interplay exists between the microtubule network and F-actin dynamics in growing axons and whether this interplay is instrumental for breaking cellular symmetry is currently unknown. Here, we show that an increment on microtubule stability or number of microtubules is associated with increased F-actin dynamics. Moreover, we show that Drebrin E, an F-actin and microtubule plusend binding protein, mediates this cross talk. Drebrin E segregates preferentially to growth cones with a higher F-actin treadmilling rate, where more microtubule plus-ends are found.
Nature Communications, 2016
Neurons display a highly polarized microtubule network that mediates trafficking throughout the extensive cytoplasm and is crucial for neuronal differentiation and function. In newborn migrating neurons, the microtubule network is organized by the centrosome. During neuron maturation, however, the centrosome gradually loses this activity, and how microtubules are organized in more mature neurons remains poorly understood. Here, we demonstrate that microtubule organization in post-mitotic neurons strongly depends on non-centrosomal nucleation mediated by augmin and by the nucleator gTuRC. Disruption of either complex not only reduces microtubule density but also microtubule bundling. These microtubule defects impair neurite formation, interfere with axon specification and growth, and disrupt axonal trafficking. In axons augmin does not merely mediate nucleation of microtubules but ensures their uniform plus end-out orientation. Thus, the augmin-gTuRC module, initially identified in mitotic cells, may be commonly used to generate and maintain microtubule configurations with specific polarity.
Nature Reviews Neuroscience, 2009
The region of a cell that lies beneath the plasma membrane and contains a network of actin filaments and associated proteins. The interaction between microtubules and components of the cell cortex that results in stabilization of the microtubules.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.