Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005, Annals of The New York Academy of Sciences
…
8 pages
1 file
Hox genes are clearly implicated in leukemia; however, neither the specificity of the leukemogenic potential among Hox genes of different paralog groups nor the role of the homeodomain is clear. We tested the leukemogenic potential of various NUP98-Hox fusion genes alone and with MEIS1. All genes tested had a significant overlapping effect in bone marrow cells in vitro. However, not all formed strong leukemogenic NUP98 fusion genes; but together with overexpression of MEIS1, all induced myeloid leukemia. This phenomenon was also seen with NUP98 fusions containing only the homeodomain of the corresponding Hox protein. We then exploited the strong transforming potential of NUP98-HOXD13 and NUP98-HOXA10 to establish preleukemic myeloid lines composed of early myeloid progenitors with extensive in vitro self-renewal capacity, short-term myeloid repopulating activity, and low propensity for spontaneous leukemic conversion. We also showed that MEIS1 can efficiently induce their conversion to leukemic stem cells, thus providing a novel model for the study of leukemic progression. In contrast to the leukemogenic effect of most of the Hox genes tested, HOXB4 has the ability to increase the self-renewal of hematopoietic stem cells without disrupting normal differentiation. On the basis of the discovery that the leukemogenic gene HOXA9 can also expand hematopoietic stem cells, we compared the ability of NUP98-Hox fusions to that of HOXB4 to trigger HSC expansion in vitro. Our preliminary results indicate that the expanding potential of HOXB4 is retained and even augmented by fusion to NUP98. Moreover, even greater expansion may be possible using Abd-B-like Hox fusions genes.
PLoS ONE, 2007
Background. Hox genes are implicated in hematopoietic stem cell (HSC) regulation as well as in leukemia development through translocation with the nucleoporin gene NUP98. Interestingly, an engineered NUP98-HOXA10 (NA10) fusion can induce a several hundred-fold expansion of HSCs in vitro and NA10 and the AML-associated fusion gene NUP98-HOXD13 (ND13) have a virtually indistinguishable ability to transform myeloid progenitor cells in vitro and to induce leukemia in collaboration with MEIS1 in vivo. Methodology/Principal Findings. These findings provided a potentially powerful approach to identify key pathways mediating Hox-induced expansion and transformation of HSCs by identifying gene expression changes commonly induced by ND13 and NA10 but not by a NUP98-Hox fusion with a non-DNA binding homedomain mutation (N51S). The gene expression repertoire of purified murine bone marrow Sca-1+Lin-cells transduced with retroviral vectors encoding for these genes was established using the Affymetrix GeneChip MOE430A. Approximately seventy genes were differentially expressed in ND13 and NA10 cells that were significantly changed by both compared to the ND13(N51S) mutant. Intriguingly, several of these potential Hox target genes have been implicated in HSC expansion and self-renewal, including the tyrosine kinase receptor Flt3, the prion protein, Prnp, hepatic leukemia factor, Hlf and Jagged-2, Jag2. Consistent with these results, FLT3, HLF and JAG2 expression correlated with HOX A cluster gene expression in human leukemia samples. Conclusions. In conclusion this study has identified several novel Hox downstream target genes and provides important new leads to key regulators of the expansion and transformation of hematopoietic stem cells by Hox.
Experimental Hematology, 2007
Objective-Strategies to expand hematopoietic stem cells (HSCs) ex vivo are of key interest. The objective of this study was to resolve if ability of HOXB4, previously documented to induce a significant expansion of HSCs in culture, may extend to other HOX genes and also to further analyze the HOX sequence requirements to achieve this effect.
Molecular and Cellular Biology, 2004
Abd-B Hox genes have been reported as fusion partners, indicating that they may have unique overlapping leukemogenic properties. To address this hypothesis, we engineered novel NUP98 fusions with Hox genes not previously identified as fusion partners: the Abd-B-like gene HOXA10 and two Antennepedia-like genes, HOXB3 and HOXB4. Notably, NUP98-HOXA10 and NUP98-HOXB3 but not NUP98-HOXB4 induced leukemia in a murine transplant model, which is consistent with the reported leukemogenic potential ability of HOXA10 and HOXB3 but not HOXB4. Thus, the ability of Hox genes to induce leukemia as NUP98 fusion partners, although apparently redundant for Abd-B-like activity, is not restricted to this group, but rather is determined by the intrinsic leukemogenic potential of the Hox partner. We also show that the potent leukemogenic activity of Abd-B-like Hox genes is correlated with their strong ability to block hematopoietic differentiation. Conversely, coexpression of the Hox cofactor Meis1 alleviated the requirement of a strong intrinsic Hox-transforming potential to induce leukemia. Our results support a model in which many if not all Hox genes can be leukemogenic and point to striking functional overlap not previously appreciated, presumably reflecting common regulated pathways.
Leukemia, 2005
Hox genes have been identified in chromosomal translocations involving the nucleoporin gene NUP98. Though the resulting chimeric proteins directly participate in the development of leukemia, the long latency and monoclonal nature of the disease support the requirement for secondary mutation(s), such as those leading to overexpression of Meis1. Models to identify such events and to study leukemic progression are rare and labor intensive. Herein, we took advantage of the strong transforming potential of NUP98-HOXD13 or NUP98-HOXA10 to establish preleukemic myeloid lines from bone marrow cells that faithfully replicate the first step of Hox-induced leukemogenesis. These lines contain early granulomonocytic progenitors with extensive in vitro self-renewal capacity, short-term myeloid repopulating activity and low propensity for spontaneous leukemic conversion. We exploit such lines to show that Meis1 efficiently induces their leukemic progression and demonstrate a high frequency of preleukemic cells in the cultures. Furthermore, we document that the leukemogenic potential of Meis1 is independent of its direct binding to DNA and likely reflects its ability to increase the repopulating capacity of the preleukemic cells by increasing their selfrenewal/proliferative capacity. The availability of lines with repopulating potential and capacity for leukemic conversion should open new avenues for understanding progression of Hox-mediated acute myeloid leukemia.
The EMBO Journal, 2001
Here we describe hemopoietic chimeras serving as a mouse model for NUP98±HOXA9-induced leukemia, which reproduced several of the phenotypes observed in human disease. Mice transplanted with bone marrow cells expressing NUP98±HOXA9 through retroviral transduction acquire a myeloproliferative disease (MPD) and eventually succumb to acute myeloid leukemia (AML). The NUP98 portion of the fusion protein was shown to be responsible for transforming a clinically silent pre-leukemic phase observed for Hoxa9 into a chronic, stem cell-derived MPD. The co-expression of NUP98±HOXA9 and Meis1 accelerated the transformation of MPD to AML, identifying a genetic interaction previously observed for Hoxa9 and Meis1. Our ®ndings demonstrate the presence of overlapping yet distinct molecular mechanisms for MPD versus AML, illustrating the complexity of leukemic transformation.
Leukemia, 2012
HOX genes have been implicated as regulators of normal and leukemic stem cell functionality, but the extent to which these activities are linked is poorly understood. Previous studies revealed that transduction of primitive mouse hematopoietic cells with a NUP98HOXA10homeodomain (NA10HD) fusion gene enables a subsequent rapid and marked expansion in vitro of hematopoietic stem cell numbers without causing their transformation or deregulated expansion in vivo. To determine whether forced expression of NA10HD in primitive human cells would have a similar effect, we compared the number of long-term culture-initiating cells (LTC-ICs) present in cultures of lenti-NA10HD versus control virus-transduced CD34 þ cells originally isolated from human cord blood and chronic phase (CP) chronic myeloid leukemia (CML) patients. We found that NA10HD greatly increases outputs of both normal and Ph þ /BCR-ABL þ LTC-ICs, and this effect is particularly pronounced in cultures containing growth factor-producing feeders. Interestingly, NA10HD did not affect the initial cell cycle kinetics of the transduced cells nor their subsequent differentiation. Moreover, immunodeficient mice repopulated with NA10HD-transduced CP-CML cells for more than 8 months showed no evidence of altered behavior. Thus, NA10HD provides a novel tool to enhance both normal and CP-CML stem cell expansion in vitro, without apparently altering other properties.
Cancer Research, 2006
The t(7;11)(p15;p15) translocation, observed in acute myelogenous leukemia and myelodysplastic syndrome, generates a chimeric gene where the 5 ¶ portion of the sequence encoding the human nucleoporin NUP98 protein is fused to the 3 ¶ region of HOXA9. Here, we show that retroviral-mediated enforced expression of the NUP98-HOXA9 fusion protein in cord bloodderived CD34 + cells confers a proliferative advantage in both cytokine-stimulated suspension cultures and stromal coculture. This advantage is reflected in the selective expansion of hematopoietic stem cells as measured in vitro by cobblestone area-forming cell assays and in vivo by competitive repopulation of nonobese diabetic/severe combined immunodeficient mice. NUP98-HOXA9 expression inhibited erythroid progenitor differentiation and delayed neutrophil maturation in transduced progenitors but strongly enhanced their serial replating efficiency. Analysis of the transcriptosome of transduced cells revealed up-regulation of several homeobox genes of the A and B cluster as well as of Meis1 and Pim-1 and down-modulation of globin genes and of CAAT/enhancer binding protein A. The latter gene, when coexpressed with NUP98-HOXA9, reversed the enhanced proliferation of transduced CD34 + cells. Unlike HOXA9, the NUP98-HOXA9 fusion was protected from ubiquitination mediated by Cullin-4A and subsequent proteasome-dependent degradation. The resulting protein stabilization may contribute to the leukemogenic activity of the fusion protein. (Cancer Res 2006; 66(24): 11781-91) Requests for reprints: Malcolm A.S. Moore,
Leukemia Research, 2011
To determine the contribution of the common N-terminal truncation of NUP98 in NUP98-translocations resulting in acute myeloid leukemia, we have conducted a structure-function analysis of NUP98 in the context of NUP98-HOXA10HD, a novel, canonical NUP98-Hox fusion that significantly enhances the selfrenewal capacity of hematopoietic stem cells and collaborates with Meis1 to induce AML in our mouse models. Our results identify that NUP98 functions by transcriptional activation likely by recruitment of CBP/p300 via its FG/GLFG repeats. In contrast, the functional interaction of NUP98 with Rae1 or the anaphase promoting complex appears non-essential for its role in NUP98-leukemogenic fusions.
Leukemia, 2013
The HOX genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream genes targets and implications for therapy.
Experimental Hematology, 2010
Objective. Functional compensation between homeodomain proteins has hindered the ability to unravel their role in hematopoiesis using single gene knockouts. Because HoxB genes are dispensable for hematopoiesis, and most HoxA genes are expressed an order of magnitude higher than other cluster genes in hematopoietic stem cell (HSC)Lenriched populations, we hypothesize that maintenance of HoxA cluster expression is important for adult hematopoiesis and that global decrease of HoxA gene expression levels affects steady-state hematopoiesis. Materials and Methods. Expression levels of HoxA cluster genes have been determined in primitive hematopoietic populations derived from adult mice using quantitative reverse transcriptase polymerase chain reaction. Furthermore, the functional effect of single allelic deletion of the entire HoxA cluster on hematopoietic cells was analyzed by competitive repopulation assays using HoxA +/L mice. Results. We show that the HoxA cluster is predominantly expressed in long-term HSCs and that expression declines with progression to short-term HSCs and early progenitors in a quantifiable manner. Monoallelic deletion of the HoxA cluster caused a general increase in primitive hematopoietic cell populations, but a decrease in side populations. In addition exhaustion of B-cell progenitors with age was observed, resulting in less mature B cells. Moreover, bone marrow of HoxA +/L mice had a significant larger population of Mac1/Gr1 neutrophils, which might be caused by accelerated maturation of myeloid progenitors. Transplantation assays demonstrated that HoxA +/L HSCs were less competitive in long-term repopulation of myeloablated recipients, which appeared intrinsic to HSCs. Conclusion. These results show for the first time that maintenance of adult HSCs and progenitors is particularly sensitive to HoxA gene levels, suggesting a specific role for the HoxA cluster in primary regulation of definitive hematopoiesis.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Experimental Hematology, 2014
Stem Cells and Development, 2011
Haematologica, 2012
Oncogene, 1999
Nature Medicine, 2003
2010
2002
Cell Stem Cell, 2011