Academia.eduAcademia.edu

Discovery Algorithms for Causally Sufficient Structures

1993, Lecture Notes in Statistics

Abstract

A discovery problem is composed of a set of alternative structures, one of which is the source of data, but any of which, for all the investigator knows before the inquiry, could be the structure from which the data are obtained. There is something to be found out about the actual structure, whichever it is. It may be that we want to settle a particular hypothesis that is true in some of the possible structures and false in others, or it may be that we want to know the complete theory of a certain sort of phenomenon. In this book, and in much of the social sciences and epidemiology, the alternative structures in a discovery problem are typically directed acyclic graphs paired with joint probability distributions on their vertices. We usually want to know something about the structure of the graph that represents causal influences, and we may also want to know about the distribution of values of variables in the graph for a given population. A discovery problem also includes a characterization of a kind of evidence; for example, data may be available for some of the variables but not others, and the data may include the actual probability or conditional independence relations or, more realistically, simply the values of the variables for random samples. Our theoretical discussions will usually consider discovery problems in which the data include the true conditional independence relations among the measured variables, but our examples and applications will always involve inferences from statistical samples. A method solves a discovery problem in the limit if as the sample size increases without bound the method converges to the true answer to the question or to the true theory, whatever