Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2020, ArXiv
…
23 pages
1 file
Deep approaches to anomaly detection have recently shown promising results over shallow methods on large and complex datasets. Typically anomaly detection is treated as an unsupervised learning problem. In practice however, one may have---in addition to a large set of unlabeled samples---access to a small pool of labeled samples, e.g. a subset verified by some domain expert as being normal or anomalous. Semi-supervised approaches to anomaly detection aim to utilize such labeled samples, but most proposed methods are limited to merely including labeled normal samples. Only a few methods take advantage of labeled anomalies, with existing deep approaches being domain-specific. In this work we present Deep SAD, an end-to-end deep methodology for general semi-supervised anomaly detection. We further introduce an information-theoretic framework for deep anomaly detection based on the idea that the entropy of the latent distribution for normal data should be lower than the entropy of the a...
2021 IEEE Winter Conference on Applications of Computer Vision (WACV)
This paper proposes a novel method to detect anomalies in large datasets under a fully unsupervised setting. The key idea behind our algorithm is to learn the representation underlying normal data. To this end, we leverage the latest clustering technique suitable for handling high dimensional data. This hypothesis provides a reliable starting point for normal data selection. We train an autoencoder from the normal data subset, and iterate between hypothesizing normal candidate subset based on clustering and representation learning. The reconstruction error from the learned autoencoder serves as a scoring function to assess the normality of the data. Experimental results on several public benchmark datasets show that the proposed method outperforms state-of-the-art unsupervised techniques and is comparable to semi-supervised techniques in most cases.
arXiv (Cornell University), 2022
Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudolabeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications-for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
2020
Though anomaly detection (AD) can be viewed as a classification problem (nominal vs. anomalous) it is usually treated in an unsupervised manner since one typically does not have access to, or it is infeasible to utilize, a dataset that sufficiently characterizes what it means to be "anomalous." In this paper we present results demonstrating that this intuition surprisingly does not extend to deep AD on images. For a recent AD benchmark on ImageNet, classifiers trained to discern between normal samples and just a few (64) random natural images are able to outperform the current state of the art in deep AD. We find that this approach is also very effective at other common image AD benchmarks. Experimentally we discover that the multiscale structure of image data makes example anomalies exceptionally informative.
2020
Anomaly detection refers to the task of finding unusual instances that stand out from the normal data. In several applications, these outliers or anomalous instances are of greater interest compared to the normal ones. Specifically in the case of industrial optical inspection and infrastructure asset management, finding these defects (anomalous regions) is of extreme importance. Traditionally and even today this process has been carried out manually. Humans rely on the saliency of the defects in comparison to the normal texture to detect the defects. However, manual inspection is slow, tedious, subjective and susceptible to human biases. Therefore, the automation of defect detection is desirable. But for defect detection lack of availability of a large number of anomalous instances and labelled data is a problem. In this paper, we present a convolutional auto-encoder architecture for anomaly detection that is trained only on the defect-free (normal) instances. For the test images, r...
2021
Deep learning approaches to anomaly detection have recently improved the state of the art in detection performance on complex datasets such as large collections of images or text. These results have sparked a renewed interest in the anomaly detection problem and led to the introduction of a great variety of new methods. With the emergence of numerous such methods, including approaches based on generative models, one-class classification, and reconstruction, there is a growing need to bring methods of this field into a systematic and unified perspective. In this review we aim to identify the common underlying principles as well as the assumptions that are often made implicitly by various methods. In particular, we draw connections between classic 'shallow' and novel deep approaches and show how this relation might cross-fertilize or extend both directions. We further provide an empirical assessment of major existing methods that is enriched by the use of recent explainability...
ArXiv, 2020
Surrogate task based methods have recently shown great promise for unsupervised image anomaly detection. However, there is no guarantee that the surrogate tasks share the consistent optimization direction with anomaly detection. In this paper, we return to a direct objective function for anomaly detection with information theory, which maximizes the distance between normal and anomalous data in terms of the joint distribution of images and their representation. Unfortunately, this objective function is not directly optimizable under the unsupervised setting where no anomalous data is provided during training. Through mathematical analysis of the above objective function, we manage to decompose it into four components. In order to optimize in an unsupervised fashion, we show that, under the assumption that distribution of the normal and anomalous data are separable in the latent space, its lower bound can be considered as a function which weights the trade-off between mutual informat...
International Journal of Computer Vision, 2021
The detection of anomalous structures in natural image data is of utmost importance for numerous tasks in the field of computer vision. The development of methods for unsupervised anomaly detection requires data on which to train and evaluate new approaches and ideas. We introduce the MVTec anomaly detection dataset containing 5354 high-resolution color images of different object and texture categories. It contains normal, i.e., defect-free images intended for training and images with anomalies intended for testing. The anomalies manifest themselves in the form of over 70 different types of defects such as scratches, dents, contaminations, and various structural changes. In addition, we provide pixel-precise ground truth annotations for all anomalies. We conduct a thorough evaluation of current state-of-the-art unsupervised anomaly detection methods based on deep architectures such as convolutional autoencoders, generative adversarial networks, and feature descriptors using pretrain...
arXiv (Cornell University), 2021
Anomaly detection (AD), separating anomalies from normal data, has many applications across domains, from security to healthcare. While most previous works were shown to be effective for cases with fully or partially labeled data, that setting is in practice less common due to labeling being particularly tedious for this task. In this paper, we focus on fully unsupervised AD, in which the entire training dataset, containing both normal and anomalous samples, is unlabeled. To tackle this problem effectively, we propose to improve the robustness of one-class classification trained on self-supervised representations using a data refinement process. Our proposed data refinement approach is based on an ensemble of one-class classifiers (OCCs), each of which is trained on a disjoint subset of training data. Representations learned by self-supervised learning on the refined data are iteratively updated as the data refinement improves. We demonstrate our method on various unsupervised AD tasks with image and tabular data. With a 10% anomaly ratio on CIFAR-10 image data / 2.5% anomaly ratio on Thyroid tabular data, the proposed method outperforms the state-of-the-art one-class classifier by 6.3 AUC and 12.5 average precision / 22.9 F1-score.
ArXiv, 2021
Video anomaly detection is one of the hot research topics in computer vision nowadays, as abnormal events contain a high amount of information. Anomalies are one of the main detection targets in surveillance systems, usually needing real-time actions. Regarding the availability of labeled data for training (i.e., there is not enough labeled data for abnormalities), semi-supervised anomaly detection approaches have gained interest recently. This paper introduces the researchers of the field to a new perspective and reviews the recent deep-learning based semi-supervised video anomaly detection approaches, based on a common strategy they use for anomaly detection. Our goal is to help researchers develop more effective video anomaly detection methods. As the selection of a right Deep Neural Network plays an important role for several parts of this task, a quick comparative review on DNNs is prepared first. Unlike previous surveys, DNNs are reviewed from a spatiotemporal feature extracti...
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021
With the growth of software systems, logs have become an important data to aid system maintenance. Log-based anomaly detection is one of the most important methods for such purpose, which aims to automatically detect system anomalies via log analysis. However, existing log-based anomaly detection approaches still suffer from practical issues due to either depending on a large amount of manually labeled training data (supervised approaches) or unsatisfactory performance without learning the knowledge on historical anomalies (unsupervised and semi-supervised approaches). In this paper, we propose a novel practical log-based anomaly detection approach, PLELog, which is semi-supervised to get rid of time-consuming manual labeling and incorporates the knowledge on historical anomalies via probabilistic label estimation to bring supervised approaches' superiority into play. In addition, PLELog is able to stay immune to unstable log data via semantic embedding and detect anomalies efficiently and effectively by designing an attention-based GRU neural network. We evaluated PLELog on two most widely-used public datasets, and the results demonstrate the effectiveness of PLELog, significantly outperforming the compared approaches with an average of 181.6% improvement in terms of F1-score. In particular, PLELog has been applied to two real-world systems from our university and a large corporation, further demonstrating its practicability.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
2020 International Joint Conference on Neural Networks (IJCNN)
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019
Cornell University - arXiv, 2019
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021
IEEE Transactions on Neural Networks and Learning Systems, 2021
2018 IEEE International Conference on Data Mining (ICDM), 2018
arXiv (Cornell University), 2021
arXiv (Cornell University), 2018
Computers, Materials & Continua
IEICE Transactions on Information and Systems, 2022
Information Sciences, 2019
Intelligent Computing and Communication, 2020
Cornell University - arXiv, 2022
EPiC Series in Computing