Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
114 pages
1 file
Mass extinction events near the Palaeozoic/Mesozoic boundary had a major impact on life on Earth. Here we present an updated analysis of the diversity dynamics and size changes of Chondrichthyes and Osteichthyes during the Permian/Triassic. We show that chondrichthyan genus diversity declined during the Middle–Late Permian. Many Palaeozoic groups (e.g. Petalodontiformes) were largely replaced by hybodonts and modern sharks (Neoselachii). A significant overall decrease in tooth size and body length observed across the Permian/Triassic boundary suggests a selective loss of large-sized chondrichthyans. The largest extinction occurred amongst marine groups, with benthic and pelagic groups suffering most, but selectivity for these palaeoecological traits is not evident. Osteichthyes show a general pattern of low diversity during the Permian to higher levels in the Triassic, leading to increased diversity among the modern ray-finned fishes (Neopterygii). Palaeopterygii experienced a significant increase in body size across the Middle/Late Permian boundary and remain among the larger fishes during the Triassic. Neopterygians mostly remained smaller and, thus, mostly occupied lower positions within aquatic food webs. Our data indicates an important evolutionary turnover among fishes, changing from chondrichthyan-dominated communities of the Carboniferous–Permian to osteichthyan (actinopterygian)-dominated associations of the Meso- and Cenozoic.
Biological reviews of the Cambridge Philosophical Society, 2014
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end-Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian-Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian-Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, 'Palaeopterygii', 'Subholostei', Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured ...
Zentralblatt für Geologie und Paläontologie, Teil II, 2010
Present paper gives an updated summary of research history on the Chondrichthyes and Osteichthyes of the Early Triassic (Griesbachian, Dienerian, Smithian, Spathian) and primarily of the early Anisian. Early Triassic and Anisian marine and freshwater ichthyofaunas are found on all continents except South America, and much more fish assemblages are known from the Northern than from the Southern Hemisphere. The Early Triassic and the Anisian are times of major importance for the phylogeny of the Chondrichthyes and Osteichthyes. After the end-Permian mass extinction the surviving groups of the cartilaginous and bony fishes recovered, and many new forms appeared in the Early Triassic. The neoselachians as well as close relatives of the teleosteans evolved, clades to which nearly all extant fishes belong. Present publication also provides a revised data base for the distribution of Early Triassic and early Anisian chondrichthyan and osteichthyan fishes in time and space on which future research on their paleo biodiversity shall be guided.
2010
"Present paper gives an updated summary of research history on the Chondrichthyes and Osteichthyes of the Early Triassic (Griesbachian, Dienerian, Smithian, Spathian) and primarily of the early Anisian. Early Triassic and Anisian marine and freshwater ichthyofaunas are found on all continents except South America, and much more fish assemblages are known from the Northern than from the Southern Hemisphere. The Early Triassic and the Anisian are times of major importance for the phylogeny of the Chondrichthyes and Osteichthyes. After the end-Permian mass extinction the surviving groups of the cartilaginous and bony fishes recovered, and many new forms appeared in the Early Triassic. The neoselachians as well as close relatives of the teleosteans evolved, clades to which nearly all extant fishes belong. Present publication also provides a revised data base for the distribution of Early Triassic and early Anisian chondrichthyan and osteichthyan fishes in time and space on which future research on their paleobiodiversity shall be guided."
Paleobiology, 2015
The small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and compare Permian-Triassic body size trends globally in eight marine clades (gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for 11,224 specimens and 2,743 species spanning the Late Permian through the Middle to Late Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decrease...
Present paper gives an updated summary of research history on the Chondrichthyes and Osteichthyes of the Early Triassic (Griesbachian, Dienerian, Smithian, Spathian) and primarily of the early Anisian. Early Triassic and Anisian marine and freshwater ichthyofaunas are found on all continents except South America, and much more fish assemblages are known from the Northern than from the Southern Hemisphere. The Early Triassic and the Anisian are times of major importance for the phylogeny of the Chondrichthyes and Osteichthyes. After the end-Permian mass extinction the surviving groups of the cartilaginous and bony fishes recovered, and many new forms appeared in the Early Triassic. The neoselachians as well as close relatives of the teleosteans evolved, clades to which nearly all extant fishes belong. Present publication also provides a revised data base for the distribution of Early Triassic and early Anisian chondrichthyan and osteichthyan fishes in time and space on which future research on their paleo biodiversity shall be guided.
Global and Planetary Change, 2010
The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities. Crown
Integrative Zoology, 2013
Global and Planetary Change, 2017
The recovery of benthic invertebrates following the late Permian mass extinction event is often described as occurring in the Middle Triassic associated with the return of Early Triassic Lazarus taxa, increased body sizes, platform margin metazoan reefs, and increased tiering. Most quantitative palaeoecological studies, however, are limited to the Early Triassic and the timing of the final phase of recovery is rarely quantified. Here, quantitative abundance data of benthic invertebrates were collected from the Middle Triassic (Anisian) succession of the Mecsek Mountains (Hungary), and analysed with univariate and multivariate statistics to investigate the timing of recovery following the late Permian mass extinction. These communities lived in a mixed siliciclastic-carbonate ramp setting on the western margin of the Palaeotethys Ocean. The new data presented here is combined with the previously studied Lower Triassic succession of the Aggtelek Karst (Hungary), which records deposition of comparable facies and in the same region of the Palaeotethys Ocean. The Middle Triassic benthic fauna can be characterised by three distinct ecological states. The first state is recorded in the Viganvár Limestone Formation representing mollusc-dominated communities restricted to above wave base,
PeerJ
The recovery of marine life from the end-Permian mass extinction event provides a test-case for biodiversification models in general, but few studies have addressed this episode in its full length and ecological context. This study analyses the recovery of marine level-bottom communities from the end-Permian mass extinction event over a period of 15 Ma, with a main focus on the previously neglected main phase during the Middle Triassic. Our analyses are based on faunas from 37 lithological units representing different environmental settings, ranging from lagoons to inner, mid- and outer ramps. Our dataset comprises 1562 species, which belong to 13 higher taxa and 12 ecological guilds. The diversification pattern of most taxa and guilds shows an initial Early Triassic lag phase that is followed by a hyperbolic diversity increase during the Bithynian (early middle Anisian) and became damped later in the Middle Triassic. The hyperbolic diversity increase is not predicted by models that...
Palaeogeography, Palaeoclimatology, …, 2004
Fishes are often thought to have passed through mass extinctions, including the Cretaceous–Tertiary (KT) event, relatively unscathed. We show that neoselachian sharks suffered a major extinction at the K/T boundary. Out of 41 families, 7 became extinct (17±12%). The proportional measure increases at lower taxic levels: 56±10% loss of genera (loss of 60 out of 107) and 84±5% loss of species (loss of 182 out of 216). However, the Maastrichtian and Danian are characterized by a high number of singleton taxa. Excluding singletons we have calculated a 34±11% loss of genera and a 45±9% loss of species. The simple completeness metric (SCM) for genera displays a decrease from the Maastrichtian (94%) to the Danian (85%) indicating a rather complete fossil record of neoselachian genera. The extinctions were heavy among both sharks and batoids (skates and rays), but most severe among batoids, which lost almost all identifiable species. There were equal losses among open marine apex predators (loss of Anacoracidae, Cretoxyrhinidae, and Scapanorhynchidae) and durophagous demersal forms from the continental shelf and shallow seas (Hypsobatidae, Parapaleobatidae, Sclerorhynchidae, Rhombodontidae). Benthopelagic and deep-sea forms were apparently little affected. New families with similar ecological roles (Carcharhinidae, Isuridae, Torpedinidae) replaced these families in the Danian, and full diversity of the different shark and batoid groups had been recovered by the end of the Paleocene or early Eocene. Sharks and rays suffered levels of extinction entirely in line with other groups of organisms at the K/T extinction event.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Proceedings of the National …, 2007
Frontiers in Earth Science, 2021
Palaeontology, 2017
Biology Letters, 2019
Science Advances, 2017
Terra Nova, 2010
PALAIOS, 2014
GSA Today, 2008
Geobiology, 2015
Palaeogeography, Palaeoclimatology, Palaeoecology, 2015
Topics in Geobiology, 2015
Italian Journal of Zoology, 1998
Earth-Science Reviews, 2013
Hydrobiologia