Academia.eduAcademia.edu

Can parallelization save the (computing) world?

Advances in Science, Technology and Engineering Systems Journal

Abstract

As all other laws of the growth in computing, the growth of computing performance also shows a "logistic curve"-like behavior, rather than an unlimited exponential growth. The stalling of the single-processor performance experienced nearly two decades ago forced computer experts to look for alternative methods, mainly for some kind of parallelization. Solving the task needs different parallelization methods, and the wide range of those distributed systems limits the computing performance in very different ways. Some general limitations are shortly discussed, and a (by intention strongly simplified) general model of performance of parallelized systems is introduced. The model enables to highlight bottlenecks of parallelized systems of different kind and with the published performance data enables to predict performance limits of strongly parallelized systems like large scale supercomputers and neural networks. Some alternative solution possibilities of increasing computing performance are also discussed.