Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
International Journal of Molecular Sciences
Our objective is to reveal the molecular mechanism of the anti-inflammatory action of low-molecular-weight heparin (LMWH) based on its influence on the activity of two key cytokines, IFNγ and IL-6. The mechanism of heparin binding to IFNγ and IL-6 and the resulting inhibition of their activity were studied by means of extensive molecular-dynamics simulations. The effect of LMWH on IFNγ signalling inside stimulated WISH cells was investigated by measuring its antiproliferative activity and the translocation of phosphorylated STAT1 in the nucleus. We found that LMWH binds with high affinity to IFNγ and is able to fully inhibit the interaction with its cellular receptor. It also influences the biological activity of IL-6 by binding to either IL-6 or IL-6/IL-6Rα, thus preventing the formation of the IL-6/IL-6Rα/gp130 signalling complex. These findings shed light on the molecular mechanism of the anti-inflammatory action of LMWH and underpin its ability to influence favourably conditions...
2020
ABSTRACTTimely control of the cytokine release syndrome (CRS) at the severe stage of COVID-19 is key to improving the treatment success and reducing the mortality rate. The inhibition of the activity of the two key cytokines, IFNγ and IL-6, can significantly reduce or even reverse the development of the cytokine storm. The objective of our investigations is to reveal the anti-inflammatory potential of heparin for prevention and suppression of the development of CRS in acute COVID-19 patients.The effect of low-molecular-weight heparin (LMWH) on IFNγ signalling inside the stimulated WISH cells was investigated by measuring its antiproliferative activity and the translocation of phosphorylated STAT1 in the nucleus. The mechanism of heparin binding to IFNγ and IL-6 and therefore inhibition of their activity was studied by means of extensive molecular-dynamics simulations. We find that LMWH binds with high affinity to IFNγ and is able to inhibit fully the interaction with its cellular re...
British Journal of Haematology, 2006
Unfractionated heparin (UFH) and low-molecular weight heparin (LMWH) are well defined anticoagulant agents. Recent data suggest that both LMWH and UFH may also have potent anti-inflammatory properties; however, their mechanism of action responsible for the anti-inflammatory effect is not yet fully elucidated. This study was designed to assess the effect of LMWH and UFH on human monocytes production of inflammatory markers and nuclear translocation of nuclear factor (NF)-jB. Cultured monocytes were pretreated for 15 min with LMWH or UFH (10 lg and 1 lg/million cells) before stimulation with lipopolysaccharide (LPS) at a dose of 1 ng/million cells. Proinflammatory cytokines tumour necrosis factor (TNF)-a, interleukin (IL)-8, IL-6 and IL-1b release were subsequently measured by enzyme-linked immunosorbent assay at 6 h, and nuclear translocation of the proinflammatory NF-jB was assessed at 2 h. Treatment with pharmacological doses of LMWH and UFH significantly attenuated LPS-induced production of TNF-a, IL-8, IL-6 and IL-1b as well as NF-jB translocation. These results indicate equivalent and significant heparin antiinflammatory properties at low doses on monocyte-mediated immune response. The inhibition of NF-jB activation certainly represents one of the mechanisms by which heparin exerts its anti-inflammatory effect. LMWH and UFH therefore appear as potential therapeutic inhibitors of inflammation.
Chemical Communications, 2012
Journal of Biological Chemistry, 2005
TSG-6, the secreted product of tumor necrosis factorstimulated gene-6, is not constitutively expressed but is up-regulated in various cell-types during inflammatory and inflammation-like processes. The mature protein is comprised largely of contiguous Link and CUB modules, the former binding several matrix components such as hyaluronan (HA) and aggrecan. Here we show that this domain can also associate with the glycosaminoglycan heparin/heparan sulfate. Docking predictions and sitedirected mutagenesis demonstrate that this occurs at a site distinct from the HA binding surface and is likely to involve extensive electrostatic contacts. Despite these glycosaminoglycans binding to non-overlapping sites on the Link module, the interaction of heparin can inhibit subsequent binding to HA, and it is possible that this occurs via an allosteric mechanism. We also show that heparin can modify another property of the Link module, i.e. its potentiation of the anti-plasmin activity of inter-␣inhibitor (I␣I). Experiments using the purified components of I␣I indicate that TSG-6 only binds to the bikunin chain and that this is at a site on the Link module that overlaps the HA binding surface. The association of heparin with the Link module significantly increases the anti-plasmin activity of the TSG-6⅐I␣I complex. Changes in plasmin activity have been observed previously at sites of TSG-6 expression, and the results presented here suggest that TSG-6 is likely to contribute to matrix remodeling, at least in part, through down-regulation of the protease network, especially in locations containing heparin/heparan sulfate proteoglycans. The differential effects of HA and heparin on TSG-6 function provide a mechanism for its regulation and functional partitioning in particular tissue microenvironments.
Biochemistry, 1999
Hepatocyte growth factor (HGF) is a heparin-binding, multipotent growth factor that transduces a wide range of biological signals, including mitogenesis, motogenesis, and morphogenesis. Heparin or closely related heparan sulfate has profound effects on HGF signaling. A heparin-binding site in the N-terminal (N) domain of HGF was proposed on the basis of the clustering of surface positive charges . (1998) Structure 6, 109-116]. In the present study, we confirmed this binding site in a heparin titration experiment monitored by nuclear magnetic resonance spectroscopy, and we estimated the apparent dissociation constant (K d ) of the heparin-protein complex by NMR and fluorescence techniques. The primary heparin-binding site is composed of Lys60, Lys62, and Arg73, with additional contributions from the adjacent Arg76, Lys78, and N-terminal basic residues. The K d of binding is in the micromolar range. A heparin disaccharide analogue, sucrose octasulfate, binds with similar affinity to the N domain and to a naturally occurring HGF isoform, NK1, at nearly the same region as in heparin binding. 15 N relaxation data indicate structural flexibility on a microsecond-to-millisecond time scale around the primary binding site in the N domain. This flexibility appears to be dramatically reduced by ligand binding. On the basis of the NK1 crystal structure, we propose a model in which heparin binds to the two primary binding sites and the N-terminal regions of the N domains and stabilizes an NK1 dimer.
Pharmaceutical Biology
Context: Several studies have shown that heparin is able to inhibit leukocyte recruitment during an early acute inflammatory response. However, considering the pharmacokinetic aspects of heparin and the dynamics of inflammation our objective was to determine if heparin is able to retain its antimigratory property during a prolonged inflammatory response. Objective: Compare the effect of heparin on leukocyte recruitment to the peritoneal cavity during early acute inflammatory response and for a longer time post-inflammatory stimulus. Materials and methods: Wistar rats pre-treated with subcutaneous heparin in doses of 1, 5, and 15 µg/kg were challenged with 2 mL intraperitoneal thioglycollate. After 3 or 8 h, the animals were killed. The cells in the peritoneal cavity were collected and counted. For differential counting, cells from peritoneal lavage and from blood were distended over a glass slide, stained, and counted. Results: After 3 h, heparin inhibited cell influx to the injury ...
Current Opinion in Structural Biology, 2001
ChemBioChem, 2013
Dedicated to Professor Gregorio Asensio on the occasion of his 65th anniversary and to the memory of Professor Ivano Bertini, a giant of Science.
Biochimica et Biophysica Acta (BBA) - General Subjects, 2009
Background: Although protamine is effective as an antidote of heparin, there is a need to replace protamine due to its side effects. HIP peptide has been reported to neutralize the anticoagulant activity of heparin. The interaction of HIP analog peptides with heparin and heparin-derived oligosaccharides is investigated in this paper. Methods: Seven analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (HIP) were synthesized, and their interaction with heparin was characterized by heparin affinity chromatography, isothermal titration calorimetry, and NMR. Results: NMR results indicate the imidazolium groups of the His side chains of histidine-containing Hip analog peptide interact site-specifically with heparin at pH 5.5. Heparin has identical affinities for HIP analog peptides of opposite chirality. Analysis by counterion condensation theory indicates the peptide AC-SRPKAKAKAKAKDQTK-NH 2 makes on average ∼ 3 ionic interactions with heparin that result in displacement of ∼ 2 Na + ions, and ionic interactions account for ∼ 46% of the binding free energy at a Na + concentration of 0.15 M. Conclusions: The affinity of heparin for the peptides is strongly dependent on the nature of the cationic side chains and pH. The thermodynamic parameters measured for the interaction of HIP peptide analogs with heparin are strongly dependent on the peptide sequence and pH. General significance: The information obtained in this research will be of use in the design of new agents for neutralization of the anticoagulant activity of heparin. The site-specific binding of protonated histidine side chains to heparin provides a molecular-level explanation for the pH-dependent binding of β-amyloid peptides by heparin and heparan sulfate proteoglycan and may have implications for amyloid formation.
Journal of Immunology Research, 2015
Heparin is known to have anti-inflammatory effects, yet the mechanisms are not completely understood. In this study, we tested the hypothesis that heparin has a direct effect on activated polymorphonuclear leukocytes (PMNLs), changing their activation state, and can explain its anti-inflammatory effect. To test our hypothesis, we designed bothin vitroandex vivostudies to elucidate the mechanism by which heparin modulates PMNL functions and therefore the inflammatory response. We specifically tested the hypothesis that priming of PMNLs renders them more susceptible to heparin. Amplified levels of CD11b and increased rate of superoxide release manifested PMNL priming. Increase in cell priming resulted in a dose-dependent increase in heparin binding to PMNLs followed by augmented apoptosis. Blocking antibodies to CD11b inhibited heparin binding and abolished the apoptotic response. Moreover, heparin caused a significant dose-dependent decrease in the rate of superoxide release from PMN...
Carbohydrate Polymers, 2015
An attractive strategy for ameliorating symptoms arising from the multi-faceted processes of excessive and/or continual inflammation would be to identify compounds able to interfere with multiple effectors of inflammation. The well-tolerated pharmaceutical, heparin, is capable of acting through several proteins in the inflammatory cascade, but its use is prevented by strong anticoagulant activity. Derivatives of heparin involving the periodate cleavage of 2,3 vicinal diols in non-sulfated uronate residues (glycolsplit) and replacement of N-sulphamido-with N-acetamido-groups in glucosamine residues, capable of inhibiting neutrophil elastase activity in vitro, while exhibiting attenuated anticoagulant properties, have been identified and characterised. These also interact with two other important modulators of the inflammatory response, IL-8 and TNF-alpha. It is therefore feasible in principle to modulate several activities, while minimising anticoagulant side effects, providing a platform from which improved antiinflammatory agents might be developed.
Journal of molecular recognition : JMR, 2017
The heparin-protein interaction plays a vital role in numerous physiological and pathological processes. Not only is the binding mechanism of these interactions poorly understood, studies concerning their therapeutic targeting are also limited. Here, we have studied the interaction of the heparin interacting peptide (HIP) from Tat (which plays important role in HIV infections) with heparin. Isothermal titration calorimetry binding exhibits distinct biphasic isotherm with two different affinities in the HIP-heparin complex formation. Overall, the binding was mainly driven by the nonionic interactions with a small contribution from ionic interactions. The stoichiometric analysis suggested that the minimal site for a single HIP molecule is a chain of 4 to 5 saccharide molecules, also supported by docking studies. The investigation was also focused on exploiting the possibility of using a small molecule as an inhibitor of the HIP-heparin complex. Quinacrine, because of its ability to mi...
Journal of Biomedical Materials Research, 2003
The glycosaminoglycan heparin is known to exhibit anti-inflammatory properties unrelated to its anticoagulant activity. However, in a generalized inflammatory response with implanted or extracorporeal devices, the beneficial effect of heparin coating and/or systemic administration is still unclear as well as the precise mechanisms of action. In the present study, we have first studied the effect of heparin on lipopolysaccharide (LPS)-induced cytokine production by human blood monocytes. Our results indicated that the production of interleukin-1␣, tumor necrosis factor-␣, and interleukin-8 was significantly decreased when heparin was simultaneously incubated with Escherichia coli LPS. Because the modulation of heparin on monocyte activation could be mediated by its binding via CD14, the main LPS receptor on monocytes, we then studied the binding of LPS and heparin to leukocytes from human blood and to Chinese hamster ovary cells transfected with the human CD14 gene. The data by flow cytometry showed the binding of biotinylated heparin to leukocytes. Moreover, the experiments performed on leukocytes and on CD14-positive Chinese hamster ovary cells indicated that heparin inhibited LPS binding. From our results, we conclude that: 1. heparin is an effective inhibitor of LPS-induced monocyte activation, and 2. heparin inhibits the binding of LPS to cells via a CD14-independent pathway. This study suggests a potentially important therapeutic application for heparin or heparin analogs to prevent inflammation with biomaterials.
Scientific reports, 2017
Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), modulate the functions of numerous cytokines. The aims of this multidisciplinary research were to characterize heparin binding to interleukin-12 (IL-12) and determine the mechanism(s) by which heparin influences IL-12 bioactivity. Heparin and HS were found to bind human IL-12 (hIL-12) with low micromolar affinity and increase hIL-12 bioactivity by more than 6-fold. Conversely, other GAGs did not demonstrate significant binding, nor did their addition affect hIL-12 bioactivity. Biophysical studies demonstrated that heparin induced only minor conformational changes while size-exclusion chromatography and small angle X-ray scattering studies indicated that heparin induced dimerization of hIL-12. Heparin modestly protected hIL-12 from proteolytic degradation, however, this was not a likely mechanism for increased cytokine activity in vitro. Flow cytometry studies revealed that heparin increased the amount of hIL-12 ...
Glycosaminoglycans (GAGs), in particular, heparan sulfate and heparin, are found colocalized with Aβ amyloid. They have been shown to enhance fibril formation, suggesting a possible pathological connection. We have investigated heparin's assembly of the KLVFFA peptide fragment using molecular dynamics simulation, to gain a molecular-level mechanistic understanding of how GAGs enhance fibril formation. The simulations reveal an exquisite process wherein heparin accelerates peptide assembly by first "gathering" the peptide molecules and then assembling them. Heparin does not act as a mere template but is tightly coupled to the peptides, yielding a composite protofilament structure. The strong intermolecular interactions suggest composite formation to be a general feature of heparin's interaction with peptides. Heparin's chain flexibility is found to be essential to its fibril promotion activity, and the need for optimal heparin chain length and concentration has been rationalized. These insights yield design rules (flexibility; chain-length) and protocol guidance (heparin:peptide molar ratio) for developing effective heparin mimetics and other functional GAGs.
Glycoconjugate Journal, 1998
Chemokine IL-8 attracts neutrophils by a haptotactic gradient, made possible by its interaction with proteoglycans of the extracellular matrix. Heparan sulfate, but not heparin, potentiates the attraction exerted in vitro by IL-8. In the present study we first confirmed this in vitro phenomenon, observing that IL-8 activity was potentiated 100% by heparan sulfate, but not by heparin. Then, we evaluated
Matrix Biology, 2010
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are "ubiquitous" components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with "heparin-binding proteins" and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in "fully sulfated" sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparinderived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide-protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.
2022
Human interferon-gamma (hIFNg) is a crucial signaling molecule with an important role in the initialization and development of the immune response of the host. However, its aberrant activity is also associated with the progression of a multitude of autoimmune and other diseases, which determines the need for effective inhibitors of its activity. The development of such treatments requires proper understanding of the interaction of hIFNg to its cell-surface receptor hIFNGR1. Currently, there is no comprehensive model of the mechanism of this binding process. Here, we employ molecular dynamics simulations to study on a microscopic level the process of hIFNg–hIFNGR1 complex formation in different scenarios. We find that the two molecules alone fail to form a stable complex, but the presence of heparan-sulfate-like oligosaccharides largely facilitates the process by both demobilizing the highly flexible C-termini of the cytokine and assisting in the proper positioning of its globule between the receptor subunits. An antiproliferative-activity assay on cells depleted from cell-surface heparan sulfate (HS) sulfation together with the phosphorylation levels of the signal transducer and activator of transcription STAT1 confirms qualitatively the simulation-based multistage complex-formation model. Our results reveal the key role of HS and its proteoglycans in all processes involving hIFNg-signalling.
Inflammation, 2000
Heparin is primarily used as an anticoagulant but has many biological functions as well. It binds with high affinity to a range of cytokines including interferon-γ (IFN-γ ) and members of chemokine superfamily. IFN-γ is a proinflammatory cytokine that plays a pivotal role in immune and inflammatory responses; and in endothelial cells, it regulates the expression of fractalkine/CX3CL1 that is a potent agonist for the chemotaxis and adhesion of monocytes and lymphocytes. We have investigated the effect of heparin on the fractalkine expression in human umbilical vein endothelial cells (HUVEC) in culture. HUVEC were treated with ∼100 µg/mL heparin and the expression of the IFN-γ -induced fractalkine mRNA and protein were measured by reverse transcription-PCR and western blotting. The IFN-γ -induced expressions of fractalkine mRNA and protein were inhibited by heparin in a concentration-dependent manner. Heparin also inhibited adhesion of mononuclear cells (MNC) to HUVEC monolayers stimulated with IFN-γ , but it did not inhibit the MNC adhesion to the monolayers stimulated with interleukin-1β. Electrophoretic analysis demonstrated direct binding of heparin to IFN-γ and heparin was found to partially block the binding of IFN-γ to IFN-γ receptor (IFN-γ R). Heparin may play a regulatory role in inflammatory and immune responses by modulating the interaction between leukocytes and the vascular endothelium.
International Journal of Molecular Sciences, 2021
Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.