Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2001, Icarus
…
15 pages
1 file
The recently upgraded Arecibo S-band (λ12.6-cm) radar was used to make delay-Doppler images of Mercury's north polar region, where earlier observations had shown strong echoes from putative ice deposits in craters. The image resolution of 1.5-3 km is a substantial improvement over the 15-km resolution of the older Arecibo images J. K. Harmon et al. 1994, Nature 369, 213-215). The new observations confirm all the original polar features and reveal many additional features, including several at latitudes as low as 72-75 • N and several from craters less than 10 km in diameter. All of the new features located on the Mariner-imaged side of the planet can be matched with known craters or other shaded areas. We find the north pole to be located 65 km from the original Mariner-based pole and 15 km from the new Mariner-based pole of M. S. Robinson et al. (1999, J. Geophys. . The improved resolution reveals fine structure in the radar features and their respective host craters, including radar shadowing/highlighting by central peaks and rim walls, rim terracing, and preferential concentration of radar-bright deposits in shaded southern floor areas. The radar features' high brightness, circular polarization inversion (µ c = 1.25), and confinement to regions permanently shaded from direct sunlight are all consistent with volume scattering from a coldtrapped volatile such as clean water ice. The sizes and locations of most of the features show good agreement with the thermal model of A. R. Vasavada, D. A. Paige, and S. E. Wood (1999, Icarus 141, 179-193) for insulated (buried) water ice, although the problems of explaining radar features in small craters and the rapid burial required at lower latitudes suggest that other factors may be suppressing ice loss after emplacement.
Icarus, 1999
In order to assess the thermal stability of polar ice deposits, we present model calculated temperatures of flat surfaces and surfaces within bowl-shaped and flat-floored polar impact craters on Mercury and the Moon. Our model includes appropriate insolation cycles, realistic crater shapes, multiple scattering of sunlight and infrared radiation, and depth-and temperature-dependent regolith thermophysical properties. Unshaded water ice deposits on the surface of either body are rapidly lost to thermal sublimation. A subsurface water ice deposit is stable within 2 • latitude of the Moon's poles. Meter-thick water ice deposits require billions of years to sublime if located in the permanently shaded portions of flat-floored craters within 10 • latitude of the poles of Mercury and 13 • latitude of the poles of the Moon. Results for craters associated with radar features on Mercury are consistent with the presence of stable water ice deposits if a thin regolith layer thermally insulates deposits at lower latitudes and within smaller craters. A regolith cover would also reduce losses from diffusion, ion sputtering, impact vaporization, and H Lyα and is implied independently by the radar observations. Permanently shaded areas near the Moon's poles are generally colder than those near Mercury's poles, but the Moon's obliquity history, its orbit through Earth's magnetospheric tail, and its radar-opaque regolith may limit the volume and radar detectability of ice deposits there.
Icarus, 1999
Recent radar observations of Mercury have detected strong depolarized echoes from the north and south polar regions which have been interpreted by some as ice deposits in the floors of permanently shadowed impact craters. We have used the experience from Mars, where subsurface ice lowers the depth-to-diameter ratio (d/D) of impact craters, to test for subsurface ice deposits on Mercury. This analysis determines the d/D ratios for 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles of the planet. Possible effects from sun angle and terrain were eliminated. To test whether d/D differences could be detected at Mariner 10 resolutions (∼1 km/pixel), we perform a similar analysis using Mariner 9 images of Mars which have similar resolutions. We demonstrate that d/D differences due to terrain softening can be detected between craters in the martian polar regions and the equatorial regions at the Mariner 9 resolutions. Although our initial results indicate that the south polar Bach Quadrangle has a statistically lower d/D than the north polar (Borealis) or two equatorial (Tolstoj and Kuiper) quadrangles, further investigation reveals that this finding is most likely the result of the filtering which was applied to the images of the Bach quadrangle by JPL. Thus, no unequivocal evidence exists that the possible ice deposits in craters at Mercury's north and south poles are the exposed portions of more extensive subsurface ice caps. Combined with the temporal constraint imposed by the fact that the proposed ice deposits are found only in USGS Class 4 craters, this suggests a large, rapidly emplaced exogenic source of water to Mercury during the Mansurian period. We suggest that the source was multiple impacts from a fragmented comet or a comet shower.
Journal of Geophysical Research: Planets, 2012
Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet's poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury's north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (<170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.
Planetary and Space Science, 2005
The depth-to-diameter (d/D) ratios were determined for 12 craters located near the Mercurian north pole that were identified by Harmon et al. (2001, Icarus 149) as having strong depolarized radar echos. We find that the mean d/D value of these radar-bright craters is 2 3 the mean d/D value of the general population of non-radar-bright craters in the surrounding north polar region. Previous studies, however, show no difference between d/D values of Mercurian polar and equatorial crater populations, suggesting that no terrain softening which could modify crater structure exists at the Mercurian poles (Barlow et al., 1999, 194, Icarus 141). Thus, the change in d/D is governed by a change in crater depth, probably due to deposition of material inside the crater. The volume of infilling material, including volatiles, in the radar-bright craters is significantly greater than predicted by proposed mechanisms for the emplacement of either water ice or sulfur. r
Journal of Geophysical Research: Planets, 2018
Dwarf planet Ceres is characterized by several sites hosting (or have hosted) ice-rich patches as revealed by the Dawn's Visible and InfraRed spectrometer. The study of the illumination conditions including the effects of the local topography become critical in the estimation of the ice lifetime as well as the water vapor production rate. In this work we applied a 3-D thermophysical model in order to study the illumination conditions on the shape model, derived on the basis of the images acquired by the Dawn's Framing Camera during the Survey mission phase, and to calculate the surface temperatures and water sublimation rates. We are interested in a crater in the northern hemisphere (42 ∘), Oxo, which hosts water ice in its southern wall. A comparison with the surface temperatures and water sublimation rates of another Ceres' crater, Juling, is carried out. Water ice sublimation rate of its ice-rich patch suggests that the Oxo crater probably is not the source of the emission detected by Herschel, a source that could be represented instead by the Juling crater. Plain Language Summary There are several reasons to support the idea that the dwarf planet Ceres is a world with a huge presence of water. First of all, spectral evidence of water ice has been revealed by the Dawn's Visible and InfraRed spectrometer on the wall of some craters. Furthermore, both geomorphological evidence like surface flows and the presence of minerals, whose origin is correlated to the aqueous alteration, support this idea. Numerical simulations could contribute to understand how long the ice is stable on the surface, by studying the illumination conditions, and quantifies the eventual sublimation rate. In this work we concern about a particular crater, Oxo, in the northern hemisphere at latitude 42 ∘ , which hosts an ice-rich patch in the southern wall.
PSR shows large variation in CPR range for Mini-SAR when compared with Mini-RF data. High CPR values together with low degree of polarization(m) and relative phase LH-LV (δ) signify presence of water ice in the secondary craters of Peary.
Science China Physics, Mechanics and Astronomy, 2010
The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau -Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang'e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.
2012
Although diverse measurements have indicated H+, OH−, or H2O species in the lunar polar regions, pinpointing its location, form, and abundance in specific reservoirs has proven elusive. Here we report on the first orbital radar measurements of Shackleton crater near the lunar south pole.
Cold Regions Science and Technology, 2019
The warming climate is changing the surface dynamics of the Greenland Ice Sheet, including the balance between snowfall and melt. Increasing surface melt impacts the structure of the relatively porous near-surface layer known as firn. Camp Century, a base abandoned in 1967, now comprises a subsurface debris field within the firn in Northwest Greenland. We collected 80 km of 100 or 250 MHz radar data in nested grids over this subsurface debris field. Here, we present a comprehensive analysis and interpretation of this ice-penetrating radar survey. The vast majority (95%) of subsurface reflectors are located at depths of greater than 32 m. The tunnel network, as well as an overlying layer associated with historical surface activities, is readily visible in the radar data. This subsurface debris field is approximately circular with a radius of less than 1 km. Local downwarping of clear internal layerslikely annual accumulation layers-identifies now-collapsed liquid sumps. Analysis of radar signal polarity suggests that liquid hydrocarbons are likely present in one of these sumps. The radar data and a geo-referenced site map of Camp Century are freely accessible at www.campcenturyclimate.dk.
Journal of Geophysical Research, 2011
Abstract[1] Since their discovery, Martian pedestal craters have been interpreted as remnants of layers that were once regionally extensive but have since been mostly removed. Pedestals span from subkilometer to hundreds of kilometers, but their thickness is less than ∼500 m. Except for a small equatorial concentration in the Medusae Fossae Formation, the nearly exclusive occurrence of pedestal craters in the middle and high latitudes of Mars has led to the suspicion that the lost units bore a significant fraction of volatiles, such as water ice. Recent morphological characterizations of pedestal deposits have further supported this view. Here we employ radar soundings obtained by the Shallow Radar (SHARAD) to investigate the volumes of a subset of the pedestal population, in concert with high-resolution imagery to assist our interpretations. From the analysis of 97 pedestal craters we find that large pedestals (diameter >30 km) are relatively transparent to radar in their majority, with SHARAD being able to detect the base of the pedestal deposits, and possess an average dielectric permittivity of 4 ± 0.5. In one of the cases of large pedestals in Malea Planum, layering is detected both in SHARAD data and in high-resolution imagery of the pedestal margins. We find that clutter is a major issue in the analysis of radar soundings for smaller pedestals, and tentative detection of the basal reflection occurs in only a few of the cases examined. These detections yield a higher average permittivity of ∼6. The permittivity value derived for the larger pedestals, for which a basal reflection is unambiguous, is higher than that of pure water ice but lower than that of most silicate materials. A mixture of ice and silicates or an ice-free porous silicate matrix can explain a permittivity of ∼4, and radar alone cannot resolve this nonuniqueness. Data from the Compact Reconnaissance Imaging Spectrometer (CRISM) tentatively confirms a mafic component in at least one pedestal in Malea Planum. Interpretation of SHARAD results can support either a mixture of ice and silicates or a porous silicate. The former is compatible with a model where nonpolar ice is periodically deposited in the midlatitudes as a result of obliquity variations. The latter is compatible with ash deposits, at least in where pedestals appear in volcanic centers such as Malea Planum.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Earth Surface, 2015
Journal of Glaciology, 2009
Geophysical Research Letters, 2020
2007
Geophys. Res. …, 2009
The Cryosphere, 2021
Low Temperature Materials and Mechanisms, 2016
Journal of Geophysical Research, 2003
Planetary and Space Science, 2011
Journal of Geophysical Research: Atmospheres, 2008
Meteoritics & Planetary Science, 2003
IEEE Transactions on Geoscience and Remote Sensing, 2000
Journal of Geophysical Research, 2010
Geophysical Research Letters, 1998