Academia.eduAcademia.edu

Two-State Theory of Nonlinear Stochastic Resonance

2003, Physical Review Letters

Abstract

An amenable, analytical two-state description of the nonlinear population dynamics of a noisy bistable system driven by a rectangular subthreshold signal is put forward. Explicit expressions for the driven population dynamics, the correlation function (its coherent and incoherent part), the signal-to-noise ratio (SNR) and the Stochastic Resonance (SR) gain are obtained. Within a suitably chosen range of parameter values this reduced description yields anomalous SR-gains exceeding unity and, simultaneously, gives rise to a non-monotonic behavior of the SNR vs. the noise strength. The analytical results agree well with those obtained from numerical solutions of the Langevin equation.