Academia.eduAcademia.edu

Phenomena and mechanisms of crack propagation in glass-ceramics

2008, Journal of the Mechanical Behavior of Biomedical Materials

Abstract

Lithium disilicate, leucite and apatite glass-ceramics have become state-of-the-art framework materials in the fabrication of all-ceramic dental restorative materials. The goal of this study was to examine the crack propagation behaviour of these three known glass-ceramic materials after they have been subjected to Vickers indentation and to characterize their crack opening profiles (δ meas vs. (a − r)). For this purpose, various methods of optical examination were employed. Optical microscopy investigations were performed to examine the crack phenomena at a macroscopic level, while high-resolution techniques, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to investigate the crack phenomena at a microscopic level. The crack patterns of the three glass-ceramics vary from fairly straightforward to more complex, depending on the amount of residual glass matrix present in the material. The high-strength lithium disilicate crystals feature a high degree of crosslinking, thereby preventing crack propagation. In this material, the crack propagates only through the residual glass phase, which constitutes 30%-40% by volume. Having a high glass content of more than 65% by volume, the leucite and apatite glass-ceramics show far more complex crack patterns. Cracks in the leucite glass-ceramic propagate through both the glass and crystal phase. The apatite glass-ceramic shows a similar crack behaviour as an inorganic-organic composite material containing nanoscale fillers, which are pulled out in the surroundings of the crack tip. The observed crack behaviour and the calculated K tip values of the three types of glassceramics were compared to the K IC values determined according to the SEVNB method.