Academia.eduAcademia.edu

IRJET- Modelling and Analysis of a Convergent -Divergent Nozzle

2021, IRJET

Nozzle is a part of the propulsion system which is used to accelerate the hot gases flowing through it. The nozzle geometry is highly important because it directly affect the overall performance of propulsion system. Also, design of nozzle is an important aspect for achieving the maximum Mach number or supersonic speed. To achieve supersonic speed a type of nozzle called Convergent-Divergent nozzle or otherwise known as the de Laval nozzle or CD nozzle is used which converts the high temperature, high pressure, and low velocity gas into high velocity and low pressure gas at the exit. The main aim of this work is to model Convergent-Divergent nozzle and analyse the variation in flow parameters that are static pressure, velocity, static temperature and Mach number by modifying the nozzle divergent angle, keeping same throat and inlet diameter and by using the optimum convergent angle of 28.5°. Analysis is carried out for divergent angles 5°, 10°, 15° and 20° using computational fluid dynamics software(CFD). CFD results were compared with the theoretical results. Variation in flow parameters at the nozzle outlet is studied so as to find the optimum divergent angle for the optimum convergent angle. By considering the results of all the divergent angles 20° gave maximum Mach number that will lead to improve performance of the nozzle and thereby the power and efficiency of a propulsion system.