Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003, Physical review letters
We demonstrate theoretically and experimentally that secure communication using intermediate-energy (mesoscopic) coherent states is possible. Our scheme is different from previous quantum cryptographic schemes in that a short secret key is explicitly used and in which ...
Physical Review A, 1995
The safety of a quantum key distribution system relies on the fact that any eavesdropping attempt on the quantum channel creates errors in the transmission. For a given error rate, the amount of information that may have leaked to the eavesdropper depends on both the particular system and the eavesdropping strategy. In this work, we discuss quantum cryptographic protocols based on the transmission of weak coherent states and present a new system, based on a symbiosis of two existing ones, and for which the information available to the eavesdropper is significantly reduced. This system is therefore safer than the two previous ones. We also suggest a possible
2002
We demonstrate that secure communication using coherent states is possible. The optimal eavesdropping strategy for an M-ry ciphering scheme shows that the minimum probability of error in a measurement for bit determination can be made arbitrarily close to the pure guessing value P_e=1/2. This ciphering scheme can be optically amplified without degrading the security level. New avenues are open to
SPIE Proceedings, 2002
In this paper, we present a proof-of-concept experimental demonstration of the secret key quantum cryptographic scheme. A tabletop communication link was set up in the free-space channel using ordinary lasers as transmitters, which emit coherent states of light, and quantumlimited direct detection was employed in the receivers. In the secret key scheme, one needs a supply of M possible quantum states that are uniformly distributed over some random variable. In the free-space case, we used polarization angle as the variable determining the state. In the proof-of-concept demonstration, we aimed towards sending data messages encrypted with a short secret key from the transmitter to the receiver. The messages could be successfully deciphered by the receiver by its knowledge of the secret key. However, when the secret key was taken away, in order to mimic an eavesdropper, the messages could not be deciphered.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2017
Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD ...
Physical Review A, 2003
This work shows how two parties A and B can securely share sequences of random bits at optical speeds. A and B possess true-random physical sources and exchange random bits by using a random sequence received to cipher the following one to be sent. A starting shared secret key is used and the method can be described as an unlimited one-time-pad extender. It is demonstrated that the minimum probability of error in signal determination by the eavesdropper can be set arbitrarily close to the pure guessing level. Being based on the M-ry encryption protocol this method also allows for optical amplification without security degradation, offering practical advantages over the BB84 protocol for key distribution.
2004
We present a new protocol for practical quantum cryptography, tailored for an implementation with weak coherent pulses. The key is obtained by a very simple time-of-arrival measurement on the data line; an interferometer is built on an additional monitoring line, allowing to monitor the presence of a spy (who would break coherence by her intervention). Against zero-error attacks (the analog of photon-number-splitting attacks), this protocol performs as well as standard protocols with strong reference pulses: the key rate decreases only as the transmission t of the quantum channel. We present also two attacks that introduce errors on the monitoring line: the intercept-resend, and a coherent attack on two subsequent pulses. Finally, we sketch several possible variations of this protocol.
Physical Review A, 2010
Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75 (1995) 1239] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets travelling along separate channels. Here we present an experiment realizing this scheme.
Physical Review A, 2006
We propose efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. By these phase encodings, the probability of basis mismatch is reduced and total efficiency is increased. We also propose mixed-state protocols by omitting a part of classical communication steps in the efficient-phase-encoding protocols. The omission implies a reduction of information to an eavesdropper and possibly enhances the security of the protocols. We investigate the security of the protocols against individual beam splitting attack.
Physical Review Applied, 2020
Quantum cryptographic conferencing (QCC) holds promise for distributing information-theoretic secure keys among multiple users over long distance. Limited by the fragility of Greenberger-Horne-Zeilinger (GHZ) state, QCC networks based on directly distributing GHZ states at long distance still face big challenge. Another two potential approaches are measurement device independent QCC and conference key agreement with singlephoton interference, which was proposed based on the post-selection of GHZ states and the post-selection of W state, respectively. However, implementations of the former protocol are still heavily constrained by the transmission rate η of optical channels and the complexity of the setups for post-selecting GHZ states. Meanwhile, the latter protocol cannot be cast to a measurement device independent prepare-and-measure scheme. Combining the idea of post-selecting GHZ state and recently proposed twin-field quantum key distribution protocols, we report a QCC protocol based on weak coherent state interferences named phase-matching quantum cryptographic conferencing, which is immune to all detector side-channel attacks. The proposed protocol can improve the key generation rate from O(η N) to O(η N−1) compared with the measurement device independent QCC protocols. Meanwhile, it can be easily scaled up to multiple parties due to its simple setup.
Quantum Matter
In recent years Quantum Key Distribution (QKD) has emerged as the most paradigmatic example of Quantum technology allowing the realization of intrinsically secure communication links over hundreds of kilometers. Beyond its commercial interest QKD also has high conceptual relevance in the study of quantum information theory and the foundations of quantum mechanics. In particular, the discussion on the minimal resources needed in order to obtain absolutely secure quantum communication is yet to be concluded. Here we present an overview on our last experimental results concerning two novel quantum cryptographic schemes which do not require some of the most widely accepted conditions for realizing QKD. The first is Goldenberg-Vaidman protocol [1], in which even if only orthogonal states (that in general can be cloned without altering the state) are used, any eavesdropping attempt is detectable. The second is N09 protocol [2] which, being based on the quantum counterfactual effect, does not even require any actual photon transmission in the quantum channel between the parties for the communication.
Nature Physics, 2008
Quantum cryptography has been recently extended to continuous variable systems, e.g., the bosonic modes of the electromagnetic field. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. Such protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. In this general scenario we show a "hardware solution" for enhancing the security thresholds of these protocols. This is possible by extending them to a two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other with the chance of a non-trivial superadditive enhancement of the security thresholds. Such results enable the extension of quantum cryptography to more complex quantum communications.
Photonic Quantum …, 1997
The secure distribution of the secret random bit sequences known as "key" material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over "open" multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmissions using single-photon polarization states, which is currently undergoing laboratory testing.
Quantum Information Processing, 2013
This paper presents a modified secure direct communication protocol by using the blind polarization bases and particles' random transmitting order. In our protocol, a sender (Alice) encodes secret messages by rotating a random polarization angle of particle and then the receiver (Bob) sends back these particles as a random sequence. This ensures the security of communication.
Free-Space Laser Communication and Laser Imaging II, 2002
In this paper, we present a proof-of-concept experimental demonstration of the secret key quantum cryptographic scheme. A tabletop communication link was set up in the free-space channel using ordinary lasers as transmitters, which emit coherent states of light, and quantumlimited direct detection was employed in the receivers. In the secret key scheme, one needs a supply of M possible quantum states that are uniformly distributed over some random variable. In the free-space case, we used polarization angle as the variable determining the state. In the proof-of-concept demonstration, we aimed towards sending data messages encrypted with a short secret key from the transmitter to the receiver. The messages could be successfully deciphered by the receiver by its knowledge of the secret key. However, when the secret key was taken away, in order to mimic an eavesdropper, the messages could not be deciphered.
Physical Review Letters, 2004
In this letter, first, we investigate the security of a continuous-variable quantum cryptographic scheme with a postselection process against individual beam splitting attack. It is shown that the scheme can be secure in the presence of the transmission loss owing to the postselection. Second, we provide a loss limit for continuous-variable quantum cryptography using coherent states taking into account excess Gaussian noise on quadrature distribution. Since the excess noise is reduced by the loss mechanism, a realistic intercept-resend attack which makes a Gaussian mixture of coherent states gives a loss limit in the presence of any excess Gaussian noise.
2007
Quantum cryptography or quantum key distribution (QKD) applies fundamental laws of quantum physics to guarantee secure communication. The security of quantum cryptography was proven in the last decade. Many security analyses are based on the assumption that QKD system components are idealized. In practice, inevitable device imperfections may compromise security unless these imperfections are well investigated. A highly attenuated laser pulse which gives a weak coherent state is widely used in QKD experiments. A weak coherent state has multi-photon components, which opens up a security loophole to the sophisticated eavesdropper. With a small adjustment of the hardware, we will prove that the decoy state method can close this loophole and substantially improve the QKD performance. We also propose a few practical decoy state protocols, study statistical fluctuations and perform experimental demonstrations. Moreover, we will apply the methods from entanglement distillation protocols based on two-way classical communication to improve the decoy state QKD performance. Furthermore, we study the decoy state methods for other single photon sources, such as triggering parametric down-conversion (PDC) source. Note that our work, decoy state protocol, has attracted a lot of scientific and media interest. The decoy state QKD becomes a standard technique for prepare-and-measure QKD schemes. Aside from single-photon-based QKD schemes, there is another type of scheme based on entangled photon sources. A PDC source is commonly used as an entangled photon source. We propose a model and post-processing scheme for the entanglement-based QKD with a PDC source. Although the model is proposed to study the entanglementbased QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. By simulating a real PDC experiment, we show that the entanglement-based QKD can achieve longer maximal secure distance than the single-photon-based QKD schemes.
Journal of Physics B-atomic Molecular and Optical Physics, 2011
In this paper, we present a new idea of two-way quantum communication called 'secure quantum information exchange' (SQIE). If there are two arbitrary unknown quantum states |ξrangIA and |ηrangIB, initially with Alice and Bob, respectively, then SQIE protocol leads to the simultaneous exchange of these states between Alice and Bob with the aid of the special kind of six-qubit entangled (SSE) state and classical assistance of the third party, Charlie. The term 'secure' signifies the fact that SQIE protocol either faithfully exchanges the unknown quantum states proceeding in a prescribed way or, in case of any irregularity, the process generates no results. For experimental realization of the SQIE protocol, we have suggested an efficient scheme for generating SSE states using the interaction between highly detuned Λ-type three-level atoms and the optical coherent field. By theoretical calculations, we found that SSE states of almost unit fidelity with perfect success rates for appreciable mean photon numbers (Fav >= 0.999 for |α|2 >= 1.5) can be generated by our scheme. Further, we have discussed possible experimental imperfections, such as atomic-radiative time, cavity damping time, atom-cavity interaction time, and the efficiency of discrimination between the coherent field and the vacuum state shows that our SQIE protocol is within the reach of technology presently available.
Optica, 2017
Quantum key distribution (QKD) permits information-theoretically secure transmission of digital encryption keys, assuming that the behaviour of the devices employed for the key exchange can be reliably modelled and predicted. Remarkably, no assumptions have to be made on the capabilities of an eavesdropper other than that she is bounded by the laws of Nature, thus making the security of QKD "unconditional". However, unconditional security is hard to achieve in practice. For example, any experimental realisation can only collect finite data samples, leading to vulnerabilities against coherent attacks, the most general class of attacks, and for some protocols the theoretical proof of robustness against these attacks is still missing. For these reasons, in the past many QKD experiments have fallen short of implementing an unconditionally secure protocol and have instead considered limited attacking capabilities by the eavesdropper. Here, we explore the security of QKD against coherent attacks in the most challenging environment: the long-distance transmission of keys. We demonstrate that the BB84 protocol can provide positive key rates for distances up to 240 km without multiplexing of conventional signals, and up to 200 km with multiplexing. Useful key rates can be achieved even for the longest distances, using practical thermo-electrically cooled single-photon detectors.
Journal of Physics B: Atomic, Molecular and Optical Physics, 2006
We present a three-party quantum secure direct communication protocol by using Greenberg-Horne-Zeilinger (GHZ) states and entanglement swapping. The proposed scheme realizes authorized parties' secure exchange of their respective secret messages simultaneously and directly in a set of devices. We show that the scheme is secure against eavesdropper's commonly used attacks. We also generalize the protocol to the N-party case by using N-partite GHZ states. Quantum secure communication along a physical channel is doubtless one of the most attractive perspectives related to the latest developments of quantum physics. Based on physical laws instead of mathematical complexities, correspondence with perfect security could be guaranteed over an insecure channel in Vernam's sense of one-time pad, which is known as quantum cryptography. The pioneering work of Bennett and Brassard [1] showed how to exploit quantum resources for cryptographic purposes. Conventionally, the problem is referred to as quantum key distribution (QKD). Since then, a variety of quantum secure communication protocols have been proposed (for a review see [2]). Although the methods used in these schemes are various, all of them allow for a secret generation of random keys through which legitimate users can accomplish a thoroughly private communication. Recently, a new concept in quantum cryptography, quantum secure direct communication (QSDC) has been proposed [3-13], which permits confidential messages to be communicated directly without first establishing random keys to encrypt them. In [4], Boström and Felbinger proposed a ping-pong protocol for private communication, in which the encoded bit can be decoded directly in each respective transmission run, thus it can realize QSDC
Cornell University - arXiv, 2012
Two protocols for deterministic secure quantum communication (DSQC) using GHZ-like states have been proposed. It is shown that one of these protocols can be modified to an equivalent but more efficient protocol of quantum secure direct communication (QSDC). Security and efficiency of the proposed protocols are analyzed in detail and are critically compared with the existing protocols. It is shown that the proposed protocols are highly efficient. It is also shown that all the physical systems where dense coding is possible can be used to design maximally efficient protocol of DSQC and QSDC. Further, it is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols of the present kind. We have shown that there exist a large class of quantum state which can be used to design maximally efficient DSQC and QSDC protocols of the present kind. It is further, observed that maximally efficient QSDC protocols are more efficient than their DSQC counterparts. This additional efficiency arises at the cost of message transmission rate.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.