Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2016, Database
…
10 pages
1 file
Advances in high-throughput and advanced technologies allow researchers to routinely perform whole genome and proteome analysis. For this purpose, they need high-quality resources providing comprehensive gene and protein sets for their organisms of interest. Using the example of the human proteome, we will describe the content of a complete proteome in the UniProt Knowledgebase (UniProtKB). We will show how manual expert curation of UniProtKB/Swiss-Prot is complemented by expert-driven automatic annotation to build a comprehensive, high-quality and traceable resource. We will also illustrate how the complexity of the human proteome is captured and structured in UniProtKB.
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2007
The completion of the human genome has shifted the attention from deciphering the sequence to the identification and characterisation of the functional components, including genes. Improved gene prediction algorithms, together with the existing transcript and protein information, have enabled the identification of most exons in a genome. Availability of the 'parts list' has fostered the development of experimental approaches to systematically interrogate gene function on the genome, transcriptome and proteome level. Studying gene function at the protein level is vital to the understanding of how cells perform their functions as variations in protein isoforms and protein quantity which may underlie a change in phenotype can often not be deduced from sequence or transcript level genomics experiments alone. Recent advancements in proteomics have afforded technologies capable of measuring protein expression, post-translational modifications of these proteins, their subcellular localisation and assembly into complexes and pathways. Although an enormous amount of data already exists on the function of many human proteins, much of it is scattered over multiple resources. Public domain databases are therefore required to manage and collate this information and present it to the user community in both a human and machine readable manner. Of special importance here is the integration of heterogeneous data to facilitate the creation of resources that go beyond a mere parts list.
Nature Communications, 2020
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Molecular & cellular proteomics, 2011
After the successful completion of the Human Genome Project, the Human Proteome Organization has recently officially launched a global Human Proteome Project (HPP), which is designed to map the entire human protein set. Given the lack of protein-level evidence for about 30% of the estimated 20,300 protein-coding genes, a systematic global effort will be necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time ...
The UniProt knowledgebase is a large resource of protein sequences and associated detailed annotation. The database contains over 60 million sequences, of which over half a million sequences have been curated by experts who critically review experimental and predicted data for each protein.
Nucleic Acids Research, 2020
The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert cu...
Journal of proteome research, 2016
The Biology and Disease-driven Human Proteome Project (B/D-HPP) is aimed at supporting and enhancing the broad use of state-of-the-art proteomic methods to characterize and quantify proteins for in depth understanding of the molecular mechanisms of biological processes and human disease. Based on a foundation of the pre-existing HUPO initiatives begun in 2002, the B/D-HPP is designed to provide standardized methods and resources for mass spectrometry (MS) and specific protein affinity reagents and facilitate accessibility of these resources to the broader life sciences research community. Currently there are 22 B/D-HPP initiatives and 3 closely related HPP resource pillars. The B/D-HPP groups are working to define sets of protein targets that are highly relevant to each particular field, to deliver relevant assays for the measurement of these selected targets, and to disseminate and make publicly accessible the information and tools generated. Major developments are the 2016 publica...
Nucleic acids research, 2017
Major advancements have recently been made in mass spectrometry-based proteomics, yielding an increasing number of datasets from various proteomics projects worldwide. In order to facilitate the sharing and reuse of promising datasets, it is important to construct appropriate, high-quality public data repositories. jPOSTrepo (https://repository.jpostdb.org/) has successfully implemented several unique features, including high-speed file uploading, flexible file management and easy-to-use interfaces. This repository has been launched as a public repository containing various proteomic datasets and is available for researchers worldwide. In addition, our repository has joined the ProteomeXchange consortium, which includes the most popular public repositories such as PRIDE in Europe for MS/MS datasets and PASSEL for SRM datasets in the USA. Later MassIVE was introduced in the USA and accepted into the ProteomeXchange, as was our repository in July 2016, providing important datasets fro...
The Chromosome-centric Human Proteome Project (C-HPP) aims to map and annotate the entire human proteome by the " chromosome-by-chromosome " strategy. As the C-HPP proceeds, the increasing volume of proteomic data sets presents a challenge for customized and reproducible bioinformatics data analyses for mining biological knowledge. To address this challenge, we updated the previous static proteome browser CAPER into a higher version, CAPER 2.0 − an interactive, configurable and extensible workflow-based platform for C-HPP data analyses. In addition to the previous visualization functions of track-view and heatmap-view, CAPER 2.0 presents a powerful toolbox for C-HPP data analyses and also integrates a configurable workflow system that supports the view, construction, edit, run, and share of workflows. These features allow users to easily conduct their own C-HPP proteomic data analyses and visualization by CAPER 2.0. We illustrate the usage of CAPER 2.0 with four specific workflows for finding missing proteins, mapping peptides to chromosomes for genome annotation, integrating peptides with transcription factor binding sites from ENCODE data sets, and functionally annotating proteins. The updated CAPER is available at http://www.bprc.ac.cn/CAPE.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal of proteome research, 2018
PLoS ONE, 2011
Journal of proteome research, 2015
Nucleic acids …, 2009
Journal of Proteome Research, 2013
Journal of Proteome Research
Journal of Proteome Research
BMC genomics, 2003