Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2015, Foundations of Physics
…
10 pages
1 file
After leading to a new axiomatic derivation of quantum theory, the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how from the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs.
Foundations of Physics, 2015
Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the elementary automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets, and some account on the position space description in terms of a discrete path-integral approach. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton distorted dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.
Annals of Physics, 2015
We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of an hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics.
2012
Quantum Information and the new informational paradigm are entering the domain of quantum field theory and gravity, suggesting the quantum automata framework. The quantum automaton is the minimal-assumption extension to the Planck and ultrarelativistic scales of quantum field theory. It can describe localized states and measurements, which are unmanageable by quantum field theory. The automaton theory is a very promising framework for quantum gravity, since it is quantum ab-initio, with relativistic covariance as emergent and not assumed a priori, it is free from all the problems arising from the continuum, it doesn't suffer violations of causality, and has no divergences. It is the natural scenario to accommodate the quantum holographic principle. Lorentz covariance and all other symmetries are violated in the ultrarelativistic Planckian regime, but are perfectly recovered at the Fermi-scale. In the present report, after briefly reviewing the fundamental principles at the basis of the quantum cellular automata extension of quantum field theory, I will present a preview of recent results on the Fermi scale limit [1] and on the Dirac automaton in two space-dimensions [2]. The automaton in three dimensions is under way.
2012
Can we reduce Quantum Field Theory (QFT) to a quantum computation? Can physics be simulated by a quantum computer? Do we believe that a quantum field is ultimately made of a numerable set of quantum systems that are unitarily interacting? A positive answer to these questions corresponds to substituting QFT with a theory of quantum cellular automata (QCA), and the present work is examining this hypothesis. These investigations are part of a large research program on a quantum-digitalization of physics, with Quantum Theory as a special theory of information, and Physics as emergent from the same quantum-information processing. A QCAbased QFT has tremendous potential advantages compared to QFT, being quantum ab-initio and free from the problems plaguing QFT due to the continuum hypothesis. Here I will show how dynamics emerges from the quantum processing, how the QCA can reproduce the Dirac-field phenomenology at large scales, and the kind of departures from QFT that that should be expected at a Planckscale discreteness. I will introduce the notions of linear field quantum automaton and local-matrix quantum automaton, in terms of which I will provide the solution to the Feynman's problem about the possibility of simulating a Fermi field with a quantum computer.
Starting from the working hypothesis that both physics and the corresponding mathematics and in particular geometry have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics living on a smooth background, and perhaps more importantly find a way how this continuum limit emerges from the mentioned discrete structure. We model this underlying substratum as a structurally dynamic cellular network (basically a generalisation of a cellular automaton). We regard these continuum concepts and continuum spacetime in particular as being emergent, coarse-grained and derived relative to this underlying erratic and disordered microscopic substratum, which we would like to call quantum geometry and which is expected to play by quite different rules, namely generalized cellular automaton rules. A central role in our analysis is played by a geometric renormalization group which creates (among other things) a kind of sparse translocal network of correlations between the points in classical continuous space-time and underlies, in our view, such mysterious phenomena as holography and the black hole entropy-area law. The same point of view holds for quantum theory which we also regard as a low-energy, coarse-grained continuum theory, being emergent from something more fundamental. In this paper we review our approach and compare it to the quantum graphity framework.
Physical Review A, 2020
It has been shown that certain quantum walks give rise to relativistic wave equations, such as the Dirac and Weyl equations, in their long-wavelength limits. This intriguing result raises the question of whether something similar can happen in the multi-particle case. We construct a one-dimensional quantum cellular automaton (QCA) model which matches the quantum walk in the single particle case, and which approaches the quantum field theory of free fermions in the long-wavelength limit. However, we show that this class of constructions does not generalize to higher spatial dimensions in any straightforward way, and that no construction with similar properties is possible in two or more spatial dimensions. This rules out the most common approaches based on QCAs. We suggest possible methods to overcome this barrier while retaining locality.
EPL (Europhysics Letters), 2015
It is shown how a Doubly-Special Relativity model can emerge from a quantum cellular automaton description of the evolution of countably many interacting quantum systems. We consider a onedimensional automaton that spawns the Dirac evolution in the relativistic limit of small wave-vectors and masses (in Planck units). The assumption of invariance of dispersion relations for boosted observers leads to a non-linear representation of the Lorentz group on the (ω, k) space, with an additional invariant given by the wave-vector k = π/2. The space-time reconstructed from the (ω, k) space is intrinsically quantum, and exhibits the phenomenon of relative locality.
Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We regard these continuum concepts and continuum spacetime in particular as being emergent, coarse-grained and derived relative to an underlying erratic and disordered microscopic substratum which is expected to play by quite different rules. A central role in our analysis is played by a geometric renormalization group which creates (among other things) a kind of sparse translocal network of correlations between the points in classical continuous space-time and underlies, in our view, such mysterious phenomena as holography and the black hole entropy-area law. The same point of view holds for quantum theory which we also regard as a low-energy, coarse-grained...
Physical Review A, 2016
The hypothesis of a discrete fabric of the universe-the "Planck scale"-is always on stage, since it solves mathematical and conceptual problems in the infinitely small. However, it clashes with special relativity, which is designed for the continuum. Here we show how the clash can be overcome within a discrete quantum theory where the evolution of fields is described by a quantum cellular automaton. The reconciliation is achieved by defining the change of observer as a change of representation of the dynamics, without any reference to space-time. We use the relativity principle, i.e. the invariance of dynamics under change of inertial observer, to identify a change of inertial frame with a symmetry of the dynamics. We consider the full group of such symmetries, and recover the usual Lorentz group in the relativistic regime of low energies, while at the Planck scale the covariance is nonlinearly distorted.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Nuclear Physics B, 1992
Physical Review A
Annals of Physics, 2016
Classical and Quantum Gravity, 2012
Zeitschrift für Naturforschung A, 2020
Annales de la Fondation Louis de Broglie, 1997
Zeitschrift für Naturforschung A
Physical Review Letters, 2013
arXiv: Quantum Physics, 2019
Physical Review A
Zeitshschrift fur Naturforschung A, 2019
The European Physical Journal C, 2021