Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2000, Europhysics Letters (EPL)
…
5 pages
1 file
We propose a model for motor proteins based on a hierarchical Hamiltonian that we have previously introduced to describe protein folding. The proposed motor model has high efficiency and is consistent with a linear load-velocity response. The main improvement with respect to previous models is that this description suggests a connection between folding and function of allosteric proteins.
PloS one, 2016
Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent fo...
International Journal of Molecular Sciences
Molecular dynamics simulations of protein folding typically consider the polypeptide chain at equilibrium and in isolation from the cellular components. We argue that in order to understand protein folding as it occurs in vivo, it should be modeled as an active, energy-dependent process, in which the cellular protein-folding machine directly manipulates the polypeptide. We conducted all-atom molecular dynamics simulations of four protein domains, whose folding from the extended state was augmented by the application of rotational force to the C-terminal amino acid, while the movement of the N-terminal amino acid was restrained. We have shown earlier that such a simple manipulation of peptide backbone facilitated the formation of native structures in diverse α-helical peptides. In this study, the simulation protocol was modified, to apply the backbone rotation and movement restriction only for a short time at the start of simulation. This transient application of a mechanical force t...
2021
Background: Proteins fold robustly and reproducibly in vivo, but many cannot fold in vitro in isolation from cellular components. Despite the remarkable progress that has been achieved by the artificial intelligence approaches in predicting the protein native conformations, the pathways that lead to such conformations, either in vitro or in vivo, remain largely unknown. The slow progress in recapitulating protein folding pathways in silico may be an indication of the fundamental deficiencies in our understanding of folding as it occurs in nature. Here we consider the possibility that protein folding in living cells may not be driven solely by the decrease in Gibbs free energy and propose that protein folding in vivo should be modeled as an active energy-dependent process. The mechanism of action of such a protein folding machine might include direct manipulation of the peptide backbone. Methods: To show the feasibility of a protein folding machine, we conducted molecular dynamics si...
Journal of Physics: Condensed Matter, 2005
The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion.
Bioinformatics, 2006
Motivation: This study presents a novel investigation of the effect of kinetic control on cotranslational protein folding. We demonstrate the effect using simple HP lattice models and show that the cotranslational folding of proteins under kinetic control has a significant impact on the final conformation. Differences arise if nature is not capable of pushing a partially folded protein back over a large energy barrier. For this reason we argue that such constraints should be incorporated into structure prediction techniques. We introduce a finite surmountable energy barrier which allows partially formed chains to partly unfold, and permits us to enumerate exhaustively all energy pathways. Results: We compare the ground states obtained sequentially with the global ground states of designing sequences (those with a unique global ground state). We find that the sequential ground states become less numerous and more compact as the surmountable energy barrier increases. We also introduce a probabilistic model to describe the distribution of final folds and allow partial settling to the Boltzmann distribution of states at each stage. As a result, conformations with the highest probability of final occurrence are not necessarily the ones of lowest energy.
Physical Chemistry Chemical Physics, 2009
The mechanisms of molecular motors transport are important for understanding multiple biological processes. Recent single-molecule experiments indicate that motor proteins myosin V moves along protein filaments via a complex biochemical pathway that consists of sequentially coupled linear and parallel two-chain segments. We investigate analytically the corresponding discrete-state stochastic divided-pathway model for molecular motors transport. Explicit expressions are obtained for velocities and dispersions. The dynamic properties of motor proteins in the divided-pathway model are compared with those in single-chain linear and parallel-pathway stochastic models. It is argued that modifying biochemical pathways has a strong effect on the dynamic properties, and it allows motor proteins to be more flexible in performing their biological functions.
We construct a phenomenological effective field theory model that describes the universality class of biologically active single-strand proteins. The model allows both for an explicit construction of native state protein conformations, and a dynamical description of protein folding and unfolding processes. The model reveals a connection between homochirality and protein collapse, and enables the theoretical investigation of various other aspects of protein folding even in the case of very long polypeptide chains where other methods are not available.
Journal of Statistical Physics, 2007
Protein motors play a central role in many cellular functions. Due to the small size of these molecular motors, their motion is dominated by high viscous friction and large thermal fluctuations. There are many levels of modeling molecular motors: from simple chemical kinetic models with a small number of discrete states to all atom molecular dynamics simulations. Here we describe
Current Opinion in Structural Biology, 1997
2003
How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins), the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces). Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Current Opinion in Structural Biology, 1998
Proceedings of The National Academy of Sciences, 2005
Chemical Physics, 2007
Macromolecular Theory and Simulations, 2008
Journal of Molecular Biology, 2000
Physical Review E, 2006
Journal of The Royal Society Interface, 2013
The Journal of chemical physics, 2014
BioMed Research International, 2013
Physical Review E, 2001
International Journal of Molecular Sciences, 2013
Parallel Computing, 2000
Physical Review Letters, 2006
Biophysical Journal, 2014
The Journal of chemical physics, 2002
Journal of biological physics, 2001
Proceedings of the National Academy of Sciences of the United States of America, 2014