Academia.eduAcademia.edu

Density-based indexing for approximate nearest-neighbor queries

1999, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '99

Abstract

We consider the problem of performing nearest-neighbor queries e ciently over large high-dimensional databases. Assuming that a full database scan to determine the nearest neighborentries is not acceptable, we study the possibility of constructing an index structure over the database. It is well-accepted that traditional database indexing algorithms fail for high-dimensional data (say d > 10 or 20 depending on the scheme). Some arguments have a d v ocated that nearest-neighbor queries do not even make sense for high-dimensional data since the ratio of maximum and minimum distance goes to 1 as dimensionality increases. We show that these arguments are based on over-restrictive assumptions, and that in the general case it is meaningful and possible to perform such queries. We present an approach for deriving a multidimensional index to support approximate nearestneighbor queries over large databases. Our approach, called DBIN, scales to high-dimensional databases by exploiting statistical properties of the data. The approach is based on statistically modeling the density of the content of the data table. DBIN uses the density model to derive a single index over the data table and requires physically rewriting data in a new table sorted by the newly created index (i.e. create what is known as a clustered-index in the database literature). The indexing scheme produces a mapping between a query point (a data record) and an ordering on the clustered index values. Data is then scanned according to the index until the probability that the nearest-neighbor has been found exceeds some threshold. We present theoretical and empirical justi cation for DBIN. The scheme supports a family of distance functions which includes the traditional Euclidean distance measure.