Academia.eduAcademia.edu

Approximation algorithms for k-anonymity

2005, Journal of Privacy …

Abstract

We consider the problem of releasing a table containing personal records, while ensuring individual privacy and maintaining data integrity to the extent possible. One of the techniques proposed in the literature is k-anonymization. A release is considered k-anonymous if the information corresponding to any individual in the release cannot be distinguished from that of at least k − 1 other individuals whose information also appears in the release. In order to achieve k-anonymization, some of the entries of the table are either suppressed or generalized (e.g. an Age value of 23 could be changed to the Age range 20-25). The goal is to lose as little information as possible while ensuring that the release is k-anonymous. This optimization problem is referred to as the