Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2014, Faraday Discussions
Given the central role of carbon in the chemistry of life, it is a fundamental question as to how carbon is supplied to the Earth, in what form and when. We provide an accounting of carbon found in solar system bodies, in particular a comparison between the organic content of meteorites and that in identified organics in the dense interstellar medium (ISM). Based on this accounting identified organics created by the chemistry of star formation could contain at most ∼15% of the organic carbon content in primitive meteorites and significantly less for cometary organics, which represent the putative contributors to starting materials for the Earth. In the ISM ∼ 30% of the elemental carbon is found in CO, either in the gas or ices, with a typical abundance of ∼ 10 −4 (relative to H 2). Recent observations of the TW Hya disk find that the gas phase abundance of CO is reduced by an order of magnitude compared to this value. We explore a solution where the volatile CO is destroyed via a gas phase processes, providing an additional source of carbon for organic material to be incorporated into planetesimals and cometesimals. This chemical processing mechanism requires warm grains (> 20 K), partially ionized gas, and sufficiently small (a grain < 10 µm) grains, i.e. a larger total grain surface area, such that freeze-out is efficient. Under these conditions static (non-turbulent) chemical models predict that a large fraction of the carbon nominally sequestered in CO can be the source of carbon for a wide variety of organics that are present as ice coatings on the surfaces of warm pre-planetesimal dust grains.
Geochimica et Cosmochimica Acta, 2003
Interplanetary dust particles (IDPs), rv IOum particles from comets and asteroids, have been collected by NASA from the Earth's stratosphere. We compared carbon X-ray Absorption Near-Edge Structure (XANES) and Fourier Transform Infra-Red (FTIR) spectra of anhydrous and hydrated interplanetary dust particles and found that anhydrous and hydrated IDPs have similar types and abundances of organic carbon. This is different from results on meteorites, which show that hydrated carbonaceous meteorites contain abundant organic matter, while anhydrous carbonaceous meteorites contain less carbon mostly in elemental form. But all anhydrous carbonaceous meteorites are depleted in moderately volatile and volatile elements in a pattern that suggested they experienced temperatures in excess of 1200°C, a temperature sufficient to destroy any organic matter they originally contained, while many anhydrous IDPs show no evidence of severe heating. These IDP results indicate that the bulk of the pre-biotic organic matter in extraterrestrial materials formed before aqueous processing, possibly by irradiation of C-bearing ices or by a Fisher-Tropsch type process operating in the gas phase of the nebula or in the interstellar medium.
Cold Spring Harbor perspectives in biology, 2010
Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed.
Proceedings of the National Academy of Sciences of the United States of America, 2015
We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher th...
Astronomy & Astrophysics, 2017
Context. A high fraction of carbon bound in solid carbonaceous material is observed to exist in bodies formed in the cold outskirts of the solar nebula, while bodies in the region of terrestrial planets contain only very small mass fractions of carbon. Most of the solid carbon component is lost and converted into CO during the spiral-in of matter as the Sun accretes matter from the solar nebula. Aims. We study the fate of the carbonaceous material that entered the proto-solar disc by comparing the initial carbon abundance in primitive solar system material and the abundance of residual carbon in planetesimals and planets in the asteroid belt and the terrestrial planet region. Methods. We constructed a model for the composition of the pristine carbonaceous material from observational data on the composition of the dust component in comets and of interplanetary dust particles and from published data on pyrolysis experiments. This material entered the inner parts of the solar nebula during the course of the build-up of the proto-sun by accreting matter from the proto-stellar disc. Based on a one-zone evolution model of the solar nebula, we studied the pyrolysis of the refractory and volatile organic component and the concomitant release of hydrocarbons of high molecular weight under quiescent conditions of disc evolution, while matter migrates into the central parts of the solar nebula. We also studied the decomposition and oxidation of the carbonaceous material during violent flash heating events, which are thought to be responsible for the formation of chondrules. To do this, we calculated pyrolysis and oxidation of the carbonaceous material in temperature spikes that were modeled according to cosmochemical models for the temperature history of chondrules. Results. We find that the complex hydrocarbon components of the carbonaceous material are removed from the disc matter in the temperature range between 250 and 400 K, but the amorphous carbon component survives to temperatures of 1200 K. Without efficient carbon destruction during flash-heating associated with chondrule formation, the carbon abundance of terrestrial planets, except for Mercury, would be of several percent and not as low as it is found in cosmochemical studies. Chondrule formation seems to be a crucial process for the carbon-poor composition of the material of terrestrial planets.
Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of 'polar ice' mantles, the red wing on the 3 µm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 µm 'carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.
Faraday Discussions, 2014
Observational evidence seems to indicate that the depletion of interstellar carbon into dust shows rather wide variations and that carbon undergoes rather rapid recycling in the interstellar medium (ISM). Small hydrocarbon grains are processed in photo-dissociation regions by UV photons, by ion and electron collisions in interstellar shock waves and by cosmic rays. A significant fraction of hydrocarbon dust must therefore be re-formed by accretion in the dense, molecular ISM. A new dust model (Jones et al., Astron. Astrophys., 2013, 558, A62) shows that variations in the dust observables in the diffuse interstellar medium (nH ≤ 103 cm−3), can be explained by systematic and environmentally-driven changes in the small hydrocarbon grain population. Here we explore the consequences of gas-phase carbon accretion onto the surfaces of grains in the transition regions between the diffuse ISM and molecular clouds (e.g., Jones, Astron. Astrophys., 2013, 555, A39). We find that significant car...
arXiv (Cornell University), 2016
We compare the elemental depletions in the gas phase of the interstellar medium (ISM) with the elemental depletions in the rocky material of our Solar System. Our analysis finds a high degree of chemical complementarity: elements depleted in the gas phase of the ISM are enriched in the rocky material of our Solar System, and vice versa. This chemical complementarity reveals the generic connections between interstellar dust and rocky planetary material. We use an inheritance model to explain the formation of primordial grains in the solar nebula. The primary dust grains inherited from the ISM, in combination with the secondary ones condensed from the solar nebula, constitute the primordial rocky material of our planetary system, from which terrestrial planets are formed through the effects of the progressive accretion and sublimation. The semi-major-axis-dependence of the chemical composition of rocky planetary material is also observed by comparing elemental depletions in the Earth, CI chondrites and other types of carbonaceous chondrites.
The Astrophysical Journal, 2010
We present the results of experiments aimed at studying the interaction of hydrogen atoms at 80 K with carbon grains covered with a water ice layer at 12 K. The effects of H processing have been analyzed, using IR spectroscopy, as a function of the water ice layer. The results confirm that exposure of the samples to H atoms induces the activation of the band at 3.47 μm with no evidence for the formation of aromatic and aliphatic C-H bonds in the CH 2 and CH 3 functional groups. The formation cross section of the 3.47 μm band has been estimated from the increase of its integrated optical depth as a function of the H atom fluence. The cross section decreases with increasing thickness of the water ice layer, indicating an increase of adsorption of H atoms in the water ice layer. A penetration depth of 100 nm has been estimated for H atoms in the porous water ice covering carbon grains. Sample warm-up at room temperature causes the activation of the IR features due to the vibrations of the CH 2 and CH 3 aliphatic functional groups. The evolution of the 3.47 μm band carrier has been evaluated for dense and diffuse interstellar clouds, using the estimated formation cross section and assuming that the destruction cross section by energetic processing is the same as that derived for the 3.4 μm band. In both environments, the presence of the 3.47 μm band carrier is compatible with the evolutionary timescale limit imposed by fast cycling of materials between dense and diffuse regions of the interstellar medium. In diffuse regions the formation of the CH 2 and CH 3 aliphatic bands, inhibited in dense regions, takes place, masking the 3.47 μm band. The activation of the CH 2 and CH 3 aliphatic vibrational modes at the end of H processing after sample warm-up represents the first experimental evidence supporting an evolutionary connection between the interstellar carbon grain population, which is responsible for the 3.4 μm band (diffuse regions) and contributes to the absorption at 3.47 μm (dense regions), and the organics observed in interplanetary dust particles and cometary Stardust grains.
Astronomy & Astrophysics, 2012
Context. Time-dependent gas-grain chemistry can help us understand the layered structure of species deposited onto the surface of grains during the lifetime of a protoplanetary disk. The history of trapping large quantities of carbon-and oxygen-bearing molecules onto the grains is especially significant for the formation of more complex (organic) molecules on the surface of grains. Aims. Among other processes, cosmic ray-induced UV photoprocesses can lead to the efficient formation of OH. Using a more accurate treatment of cosmic ray-gas interactions for disks, we obtain an increased cosmic ray-induced UV photon flux of 3.8 × 10 5 photons cm −2 s −1 for a cosmic-ray ionization rate of H 2 value of 5 × 10 −17 s −1 (compared to previous estimates of 10 4 photons cm −2 s −1 based on ISM dust properties). We explore the role of the enhanced OH abundance on the gas-grain chemistry in the midplane of the disk at 10 AU, which is a plausible location of comet formation. We focus on studying the formation/destruction pathways and timescales of the dominant chemical species. Methods. We solved the chemical rate equations based on a gas-grain chemical network and correcting for the enhanced cosmic ray-induced UV field. This field was estimated from an appropriate treatment of dust properties in a protoplanetary disk, as opposed to previous estimates that assume an ISM-like grain size distribution. We also explored the chemical effects of photodesorption of water ice into OH+H. Results. Near the end of the disk's lifetime our chemical model yields H 2 O, CO, CO 2 , and CH 4 ice abundances at 10 AU (consistent with a midplane density of 10 10 cm −3 and a temperature of 20 K) that are compatible with measurements of the chemical composition of cometary bodies for a [C/O] ratio of 0.16. This comparison puts constraints on the physical conditions in which comets were formed.
Meteoritics & Planetary Science, 2011
Coordinated in situ transmission electron microscopy and isotopic measurements of carbonaceous phases in interplanetary dust particles were performed to determine their origins. Five different types of carbonaceous materials were identified based on their morphology and texture, observed by transmission electron microscopy: globular, vesicular, dirty, spongy, and smooth. Flash heating experiments were performed to explore whether some of these morphologies are the result of atmospheric entry processes. Each of these morphologies was found to have isotopically anomalous H and N. Rare C isotopic anomalies were also observed. The isotopic and morphological properties of several of these phases, particularly the organic globules, are remarkably similar to those observed in other extraterrestrial materials including carbonaceous chondrites, comet 81P ⁄ Wild 2 particles collected by the Stardust spacecraft, and Antarctic micrometeorites, indicating that they were widespread in the early solar system. The ubiquitous nature and the isotopic anomalies of the nanoglobules and some other morphologies strongly suggest that these are very primitive phases. Given that some of the isotopic anomalies (D and 15 N excesses) are indicative of mass fractionation chemical reactions in a very cold environment, and some others ( 13 C and 15 N depletions) have other origins, these carbonaceous phases come from different reservoirs. Whatever their origins, these materials probably reflect the first stages of the evolution of solar system organic matter, having originated in the outermost regions of the protosolar disk and ⁄ or interstellar cold molecular clouds.
Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 2002
2012
Abstract: In this chapter we review the astrophysical origins of Earth's carbon, starting from the products of the Big Bang and culminating with the Earth's formation. We review the measured compositions of different primitive objects including comets, various classes of meteorites and interstellar dust particles. We discuss the composition of the Solar Nebula, especially with regards to the distribution of volatiles such as carbon.
The Astrophysical Journal, 2004
New ion probe isotopic measurements of carbon trapped within the 50 nm thick surface layer of lunar regolith grains strongly suggest that solar wind C is depleted in 13 C by at least 10% relative to terrestrial C. In order to account for the general 13 C enrichment of planetary C relative to solar C, we propose that the main carriers of C in these objects, i.e., organics, were formed in an environment that allowed a strong isotopic enrichment of 13 C in the solid phase. Such an environment is most likely a dense and warm circumstellar or interstellar gas medium, which could well correspond to the nebula surrounding the proto-Sun, where isotopic fractionation could be triggered by photochemical reactions.
Proceedings of the …, 2008
The insoluble organic material (IOM) in primitive meteorites is related to the organic material in interplanetary dust particles and comets, and is probably related to the refractory organic material in the diffuse interstellar medium. If the IOM is representative of refractory ISM organics, models for how and from what it formed will have to be revised.
The Astrophysical Journal, 2013
In this Letter we report the CO abundance relative to H 2 derived toward the circumstellar disk of the T-Tauri star TW Hya from the HD (1 − 0) and C 18 O (2 − 1) emission lines. The HD (1 − 0) line was observed by the Herschel Space Observatory Photodetector Array Camera and Spectrometer whereas C 18 O (2 − 1) observations were carried out with the Submillimeter Array at a spatial resolution of 2. ′′ 8 × 1. ′′ 9 (corresponding to ∼ 142 × 97 AU). In the disk's warm molecular layer (T > 20 K) we measure a disk-averaged gas-phase CO abundance relative to H 2 of χ(CO) = (0.1 − 3) × 10 −5 , substantially lower than the canonical value of χ(CO) = 10 −4. We infer that the best explanation of this low χ(CO) is the chemical destruction of CO followed by rapid formation of carbon chains, or perhaps CO 2 , that can subsequently freeze-out, resulting in the bulk mass of carbon locked up in ice grain mantles and oxygen in water. As a consequence of this likely time-dependent carbon sink mechanism, CO may be an unreliable tracer of H 2 gas mass.
Astronomy and Astrophysics, 2019
To understand the role that planet formation history has on the observable atmospheric carbon-to-oxygen ratio (C/O) we have produced a population of astrochemically evolving protoplanetary disks. Based on the parameters used in a pre-computed population of growing planets, their combination allows us to trace the molecular abundances of the gas that is being collected into planetary atmospheres. We include atmospheric pollution of incoming (icy) planetesimals as well as the effect of refractory carbon erosion noted to exist in our own solar system. We find that the carbon and oxygen content of Neptune-mass planets are determined primarily through solid accretion and result in more oxygen-rich (by roughly two orders of magnitude) atmospheres than hot Jupiters, whose C/O are primarily determined by gas accretion. Generally we find a "main sequence" between the fraction of planetary mass accreted through solid accretion and the resulting atmospheric C/O; planets of higher solid accretion fraction have lower C/O. Hot Jupiters whose atmospheres have been chemically characterized agree well with our population of planets, and our results suggest that hot-Jupiter formation typically begins near the water ice line. Lower mass hot Neptunes are observed to be much more carbon rich (with 0.33 C/O 1) than is found in our models (C/O ∼ 10 −2), and suggest that some form of chemical processing may affect their observed C/O over the few billion years between formation and observation. Our population reproduces the general mass-metallicity trend of the solar system and qualitatively reproduces the C/O metallicity anti-correlation that has been inferred for the population of characterized exoplanetary atmospheres.
Monthly Notices of the Royal Astronomical Society
We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted onto planets forming by core accretion from evolving protoplanetary disks. The astrochemistry of the host disk is computed using an ionization driven, nonequilibrium chemistry network within viscously evolving disk models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted onto the protoplanet. We choose a fiducial disk model and evolve planets in 3 traps-water ice line, dead zone and heat transition. For a disk with a lifetime of 4.1 Myr we produce two Hot Jupiters (M = 1.43, 2.67 M Jupiter , r = 0.15, 0.11 AU) in the heat transition and ice line trap and one failed core (M = 0.003 M Jupiter , r = 3.7 AU) in the dead zone. These planets are found with mixing ratios for CO and H 2 O of 1.99 × 10 −4 , 5.0 × 10 −4 respectively for both Hot Jupiters. Additionally for these planets we find CO 2 and CH 4 , with mixing ratios of 1.8 × 10 −6 → 9.8 × 10 −10 and 1.1 × 10 −8 → 2.3 × 10 −10 respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from Hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.
Proceedings of the International Astronomical Union, 2011
ABSTRACT
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.